Abstract-With the exponential growth of cyber-physical systems (CPS), new security challenges have emerged. Various vulnerabilities, threats, attacks, and controls have been introduced for the new generation of CPS. However, there lack a systematic study of CPS security issues. In particular, the heterogeneity of CPS components and the diversity of CPS systems have made it very difficult to study the problem with one generalized model.In this paper, we capture and systematize existing research on CPS security under a unified framework. The framework consists of three orthogonal coordinates: (1) from the security perspective, we follow the well-known taxonomy of threats, vulnerabilities, attacks and controls; (2)from the CPS components perspective, we focus on cyber, physical, and cyber-physical components; and (3) from the CPS systems perspective, we explore general CPS features as well as representative systems (e.g., smart grids, medical CPS and smart cars). The model can be both abstract to show general interactions of a CPS application and specific to capture any details when needed. By doing so, we aim to build a model that is abstract enough to be applicable to various heterogeneous CPS applications; and to gain a modular view of the tightly coupled CPS components. Such abstract decoupling makes it possible to gain a systematic understanding of CPS security, and to highlight the potential sources of attacks and ways of protection.
BackgroundAdverse Drug Reactions are one of the leading causes of injury or death among patients undergoing medical treatments. Not all Adverse Drug Reactions are identified before a drug is made available in the market. Current post-marketing drug surveillance methods, which are based purely on voluntary spontaneous reports, are unable to provide the early indications necessary to prevent the occurrence of such injuries or fatalities. The objective of this research is to extract reports of adverse drug side-effects from messages in online healthcare forums and use them as early indicators to assist in post-marketing drug surveillance.MethodsWe treat the task of extracting adverse side-effects of drugs from healthcare forum messages as a sequence labeling problem and present a Hidden Markov Model(HMM) based Text Mining system that can be used to classify a message as containing drug side-effect information and then extract the adverse side-effect mentions from it. A manually annotated dataset from http://www.medications.comis used in the training and validation of the HMM based Text Mining system.ResultsA 10-fold cross-validation on the manually annotated dataset yielded on average an F-Score of 0.76 from the HMM Classifier, in comparison to 0.575 from the Baseline classifier. Without the Plain Text Filter component as a part of the Text Processing module, the F-Score of the HMM Classifier was reduced to 0.378 on average, while absence of the HTML Filter component was found to have no impact. Reducing the Drug names dictionary size by half, on average reduced the F-Score of the HMM Classifier to 0.359, while a similar reduction to the side-effects dictionary yielded an F-Score of 0.651 on average. Adverse side-effects mined from http://www.medications.comand http://www.steadyhealth.comwere found to match the Adverse Drug Reactions on the Drug Package Labels of several drugs. In addition, some novel adverse side-effects, which can be potential Adverse Drug Reactions, were also identified.ConclusionsThe results from the HMM based Text Miner are encouraging to pursue further enhancements to this approach. The mined novel side-effects can act as early indicators for health authorities to help focus their efforts in post-marketing drug surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.