Molybdenum disulfide (MoS 2 ) has shown large promise in harvesting osmotic energy. However, the current investigations generally focus on proof-of-concept nanoscale singlepore devices with a semiconductor phase structure. Exploration of the application viability of MoS 2 in a more robust macroscopicscale two-dimensional (2D) nanofluidic membrane and acquisition of fundamentals of how the phase structure influences the power generation process are highly demanded. Here, we demonstrate that robust and stable composite membranes made up of 2D metallic MoS 2 can act as high-performance osmotic power generators. Both experiment and simulation reveal that the higher electron density of metallic MoS 2 increases the affinity of cations to the surface, which renders the system excellent ion selectivity and high ionic flux and greatly promotes transmembrane ion diffusion. When natural river water and seawater are mixed, the power density can achieve about 6.7 W m −2 . This work shows the great potential of metallic MoS 2 in nanofluidic energy devices.
A critical event during kidney organogenesis is the differentiation of podocytes, specialized epithelial cells that filter blood plasma to form urine. Podocytes derived from human pluripotent stem cells (hPSC-podocytes) have recently been generated in nephron-like kidney organoids, but the developmental stage of these cells and their capacity to reveal disease mechanisms remains unclear. Here we show that hPSC-podocytes phenocopy mammalian podocytes at the capillary loop stage (CLS), recapitulating key features of ultrastructure, gene expression, and mutant phenotype. hPSC-podocytes in vitro progressively establish junction-rich basal membranes (nephrin+podocin+ZO-1+) and microvillus-rich apical membranes (podocalyxin+), similar to CLS podocytes in vivo. Ultrastructural, biophysical, and transcriptomic analysis of gene-edited hPSCs and derived podocytes, generated using CRISPR/Cas9, reveals that podocalyxin is essential for the assembly of microvilli and lateral spaces between developing podocytes. These defects are phenocopied in CLS glomeruli of podocalyxin-deficient mice, which cannot produce urine, thereby demonstrating that podocalyxin has a conserved and essential role in mammalian podocyte maturation. Defining the maturity of hPSC-podocytes and their capacity to reveal and recapitulate pathophysiological mechanisms establishes a powerful framework for studying human kidney disease and regeneration.
Hardware Trojans (HTs) implemented by adversaries serve as backdoors to subvert or augment the normal operation of infected devices, which may lead to functionality changes, sensitive information leakages, or Denial of Service attacks. To tackle such threats, this paper proposes a novel verification technique for hardware trust, namely VeriTrust, which facilitates to detect HTs inserted at design stage. Based on the observation that HTs are usually activated by dedicated trigger inputs that are not sensitized with verification test cases, VeriTrust automatically identifies such potential HT trigger inputs by examining verification corners. The key difference between VeriTrust and existing HT detection techniques is that VeriTrust is insensitive to the implementation style of HTs. Experimental results show that VeriTrust is able to detect all HTs evaluated in this paper (constructed based on various HT design methodologies shown in the literature) at the cost of moderate extra verification time, which is not possible with existing solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.