The India‐Asia collision resulted in the Cenozoic framework of faults, ranges, and tectonic basins and the high topography of the northeastern Tibetan Plateau, but how and when these features formed remains poorly understood, leading to conflicting tectonic models. However, information on the tectonic evolution of these active orogenic belts is well preserved in synorogenic basin sediments. In this study, we carefully analyze the detrital apatite fission track ages of Cenozoic synorogenic sediments from the Jiuquan Basin to decipher the entire exhumation process of the adjacent Qilian Shan throughout the Cenozoic. Our data indicate that initially rapid Cenozoic exhumation occurred in the Qilian Shan during the late Paleocene‐early Eocene (~60–50 Ma), almost synchronous with the India‐Asia collision. The Qilian Shan subsequently experienced long‐lived exhumation that continued until at least the middle Miocene (~45–10 Ma). During this period of exhumation in the Qilian Shan, tectonic deformation occurred throughout the northeastern Tibetan Plateau. The early Cenozoic deformation in the northeastern Tibetan Plateau may have been caused by the transfer of tectonic stress from the distant India‐Asia collision boundary through the complex lithospheric environment of the Tibetan Plateau. The present tectonic configuration and topography of the Qilian Shan and the northeastern Tibetan Plateau likely became established since the middle Miocene and after the long‐lived deformation began in the early Cenozoic.
The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory. The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial differential systems. In this paper, we construct a (2+1)-dimensional extended Boiti–Leon–Manna–Pempinelli (eBLMP) equation which fails to pass the Painlevé property. The D’Alembert-type wave of the eBLMP equation is still obtained by introducing one arbitrary function of the traveling-wave variable. The multi-solitary wave which should satisfy the velocity resonance condition is obtained by solving the Hirota bilinear form of the eBLMP equation. The dynamics of the three-soliton molecule, the three-kink soliton molecule, the soliton molecule bound by an asymmetry soliton and a one-soliton, and the interaction between the half periodic wave and a kink soliton molecule from the eBLMP equation are investigated by selecting appropriate parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.