The syntheses, characterization, and emission properties of three tetragonal prismatic cages, 4a-4c, constructed from eight 90° Pt(II) acceptors, four linear dipyridyl ligands, and two tetraphenylethene (TPE)-based sodium benzoate ligands, are described. These cages are emissive in dilute solutions due to the metal-coordination-induced partial restriction of intramolecular rotation of their TPE units, while the dipyridyl moieties, which act as the pillars as well as the solvents, strongly influence these emissions. Specifically, cages 4a and 4b, bearing a 4,4'-dipyridine and a 1,2-di(4-pyridyl)ethylene as their pillar parts, respectively, display good emissions in common organic solvents at 485-493 nm that are derived from the TPE units. In contrast, cage 4c, with its BODIPY-based dipyridyl unit, exhibits two emission bands at 462-473 and 540-545 nm, originating from the TPE and BODIPY fluorophores, respectively. Moreover, cage 4b has been employed as a turn-on fluorescent sensor for thiol-containing amino acids via a self-destructive reaction, while the cage can also be regenerated via the addition of Pt(II) acceptors. The studies described herein not only enrich the ongoing research on fluorescent materials but also pave the way to prepare stimuli-responsive supramolecular coordination complexes.
Herein, we report the preparation of a multifunctional metallacage-core supramolecular gel by orthogonal metal coordination and host-guest interactions. A tetragonal prismatic cage with four appended 21-crown-7 (21C7) moieties in its pillar parts was first prepared via the metal-coordination-driven self-assembly of cis-Pt(PEt)(OTf), tetraphenylethene (TPE)-based sodium benzoate ligands and linear dipyridyl ligands. Further addition of a bisammonium linker to the cage delivered a supramolecular polymer network via the host-guest interactions between the 21C7 moieties and ammonium salts, which formed a supramolecular gel at relatively higher concentrations. Due to the incorporation of a TPE derivative as the fluorophore, the gel shows emission properties. Multiple stimuli responsiveness and good self-healing properties were also observed because of the dynamic metal coordination and host-guest interactions used to stabilize the whole network structure. Moreover, the storage and loss moduli of the gel are 10-fold those of the gel without the metallacage cores, indicating that the rigid metallacage plays a significant role in enhancing the stiffness of the gel. The studies described herein not only enrich the functionalization of fluorescent metallacages via elegant ligand design but also provide a way to prepare stimuli-responsive and self-healing supramolecular gels as robust and smart materials.
Mechanically interlocked molecules are likely candidates for the design and synthesis of artificial molecular machines. Although polyrotaxanes have already found niche applications in exotic materials with specialized mechanical properties, efficient synthetic protocols to produce them with precise numbers of rings encircling their polymer dumbbells are still lacking. We report the assembly line–like emergence of poly[n]rotaxanes with increasingly higher energies by harnessing artificial molecular pumps to deliver rings in pairs by cyclical redox-driven processes. This programmable strategy leads to the precise incorporation of two, four, six, eight, and 10 rings carrying 8+, 16+, 24+, 32+, and 40+ charges, respectively, onto hexacationic polymer dumbbells. This strategy depends precisely on the number of redox cycles applied chemically or electrochemically, in both stepwise and one-pot manners.
The abundance of sodium resources indicates the potential of sodium-ion batteries as emerging energy storage devices. However, the practical application of sodium-ion batteries is hindered by the limited electrochemical performance of electrode materials, especially at the anode side. Here, we identify alkaline earth metal vanadates as promising anodes for sodium-ion batteries. The prepared calcium vanadate nanowires possess intrinsically high electronic conductivity (> 100 S cm−1), small volume change (< 10%), and a self-preserving effect, which results in a superior cycling and rate performance and an applicable reversible capacity (> 300 mAh g−1), with an average voltage of ∼1.0 V. The specific sodium-storage mechanism, beyond the conventional intercalation or conversion reaction, is demonstrated through in situ and ex situ characterizations and theoretical calculations. This work explores alkaline earth metal vanadates for sodium-ion battery anodes and may open a direction for energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.