Low-temperature polycrystalline silicon ͑LTPS͒ thin-film transistors ͑TFTs͒ with a periodic lateral silicon grain structure have been demonstrated to exhibit high-performance electrical characteristics via the amorphous silicon spacers above the amorphous silicon film crystallized with excimer laser. Amorphous silicon spacers allowed the bottom of the under-layered amorphous silicon film to serve as seed crystals. The periodic grain structure could be artificially controlled via the super lateral growth phenomenon during excimer laser irradiation. Consequently, such periodically large and lateral grains in the TFTs would achieve high fieldeffect-mobility of 298 cm 2 /V s, as compared with the conventional ones of 128 cm 2 /V s. In addition, the uniformity of deviceto-device could be improved due to this location-manipulated lateral silicon grains.
Abstract— New pixel‐circuit designs for active‐matrix organic light‐emitting diodes (AMOLEDs) and a new analog buffer circuit for the integrated data‐driver circuit of active‐matrix liquid‐crystal displays (AMLCDs) and AMOLEDs, based on low‐temperature polycrystalline‐silicon thin‐film transistors (LTPS‐TFTs), were proposed and verified by SPICE simulation and measured results. Threshold‐voltage‐compensation pixel circuits consisting of LTPS‐TFTs, an additional control signal line, and a storage capacitor were used to enhance display‐image uniformity. A diode‐connected concept is used to calibrate the threshold‐voltage variation of the driving TFT in an AMOLED pixel circuit. An active load is added and a calibration operation is applied to study the influences on the analog buffer circuit. The proposed circuits are shown to be capable of minimizing the variation from the device characteristics through the simulation and measured results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.