Antisense oligonucleotide-mediated exon skipping is able to correct out-of-frame mutations in Duchenne muscular dystrophy and restore truncated yet functional dystrophins. However, its application is limited by low potency and inefficiency in systemic delivery, especially failure to restore dystrophin in heart. Here, we conjugate a phosphorodiamidate morpholino oligomer with a designed cellpenetrating peptide (PPMO) targeting a mutated dystrophin exon. Systemic delivery of the novel PPMO restores dystrophin to almost normal levels in the cardiac and skeletal muscles in dystrophic mdx mouse. This leads to increase in muscle strength and prevents cardiac pump failure induced by dobutamine stress in vivo. Muscle pathology and function continue to improve during the 12-week course of biweekly treatment, with significant reduction in levels of serum creatine kinase. The high degree of potency of the oligomer in targeting all muscles and the lack of detectable toxicity and immune response support the feasibility of testing the novel oligomer in treating Duchenne muscular dystrophy patients.M utations in the dystrophin gene underlie two forms of muscular dystrophy: Duchenne and Becker muscular dystrophy (DMD and BMD). DMD is caused mainly by nonsense and frame-shift mutations with little or no production of functional dystrophin protein, leading to disease onset in early childhood with lethal consequences. BMD is caused by mutations that typically create shortened but in-frame transcripts with production of partially functional dystrophin, leading to variable and often overt symptoms (1-3). Most DMD mutations occur within the rod domain, which spans more than half the length of the protein, but seems to have limited functional importance (4, 5). Antisense therapy uses specific oligomers to remove the mutated or additional exon(s) that disrupt the reading frame, thus restoring the expression of shortened forms of dystrophin protein retaining critical functions (6-11).We previously demonstrated that i.m. delivery of a specific 2Ј-O-methyl phosphorothioate antisense oligonucleotide (2ЈOMeAON) was able to skip targeted dystrophin exon 23 in mdx mouse, a model of DMD (9). This mouse carries a nonsense point mutation within exon 23 and lacks dystrophin expression (except in a few rare revertant fibers) in all muscles, including the heart (12, 13). Skipping the mutated exon 23 restored both the reading frame and dystrophin expression, with functional improvement of the treated muscles (14) [supporting information (SI) Fig. S1a]. Recently we showed that a phosphorodiamidate morpholino oligomer (PMO), E23ϩ7-18 targeting the junction of exon 23 and intron 23 of mouse dystrophin (referred to as PMOE23 hereafter), was able to induce up to functional levels of dystrophin expression in some skeletal muscles by regular i.v. injections in mdx mice (15). However, dystrophin expression induced by both 2ЈOMeAON and PMO required high doses and was highly variable between muscles and myofibers in terms of observed efficacy. Of greater conc...
Steric-block antisense oligonucleotides (AONs) are able to target RNAs for destruction and splicing alteration. Reading frame restoration of the dystrophin transcript can be achieved by AON-mediated exon skipping in the dystrophic mdx mouse model. However, simple, unmodified AONs exhibit inefficient delivery systemically, leading to dystrophin induction with high variability in skeletal muscles and barely detectable in cardiac muscle. Here, we examined a Morpholino oligomer conjugated with a dendrimeric octaguanidine (Vivo-Morpholino) and demonstrated that the delivery moiety significantly improved dystrophin production in both skeletal and cardiac muscles in mdx mice in vivo. Single intravenous (IV) injections of 6 mg/kg Vivo-MorpholinoE23 (Vivo-ME23) generated dystrophin expression in skeletal muscles at the levels higher than the injection of 300 mg/kg unmodified ME23. Repeated injections at biweekly intervals achieved near 100% of fibers expressing dystrophin in skeletal muscles bodywide without eliciting a detectable immune response. Dystrophin protein was restored to approximately 50 and 10% of normal levels in skeletal and cardiac muscles, respectively. Vivo-Morpholinos showed no signs of toxicity with the effective dosages and regime, thus offering realistic prospects for the treatment of a majority of Duchenne muscular dystrophy (DMD) patients and many other diseases by targeting RNAs.
We have earlier shown that antisense morpholino oligomers are able to restore dystrophin expression by systemic delivery in body-wide skeletal muscles of dystrophic mdx mice. However, the levels of dystrophin expression vary considerably and, more importantly, no dystrophin expression has been achieved in cardiac muscle. In this study, we investigate the efficiency of morpholino-induced exon skipping in cardiomyoblasts and myocytes in vitro, and in cardiac muscle in vivo by dose escalation. We showed that morpholino induces targeted exon skipping equally effectively in both skeletal muscle myoblasts and cardiomyoblasts. Effective exon skipping was achieved in cardiomyocytes in culture. In the mdx mice, morpholino rescues dystrophin expression dose dependently in both skeletal and cardiac muscles. Therapeutic levels of dystrophin were achieved in cardiac muscle albeit at higher doses than in skeletal muscles. Up to 50 and 30% normal levels of dystrophin were induced by single systemic delivery of 3 g kg -1 of morpholino in skeletal and cardiac muscles, respectively. High doses of morpholino treatment reduced the serum levels of creatine kinase without clear toxicity. These findings suggest that effective rescue of dystrophin in cardiac muscles can be achieved by morpholino for the treatment of Duchenne muscular dystrophy.
Exon skipping is capable of correcting frameshift and nonsense mutations in Duchenne muscular dystrophy. Phase 2 clinical trials in the United Kingdom and the Netherlands have reported induction of dystrophin expression in muscle of Duchenne muscular dystrophy patients by systemic administration of both phosphorodiamidate morpholino oligomers (PMO) and 2'-O-methyl phosphorothioate. Peptide-conjugated phosphorodiamidate morpholino offers significantly higher efficiency than phosphorodiamidate morpholino, with the ability to induce near-normal levels of dystrophin, and restores function in both skeletal and cardiac muscle. We examined 1-year systemic efficacy of peptide-conjugated phosphorodiamidate morpholino targeting exon 23 in dystrophic mdx mice. The LD(50) of peptide-conjugated phosphorodiamidate morpholino was determined to be approximately 85 mg/kg. The half-life of dystrophin expression was approximately 2 months in skeletal muscle, but shorter in cardiac muscle. Biweekly injection of 6 mg/kg peptide-conjugated phosphorodiamidate morpholino produced >20% dystrophin expression in all skeletal muscles and ≤5% in cardiac muscle, with improvement in muscle function and pathology and reduction in levels of serum creatine kinase. Monthly injections of 30 mg/kg peptide-conjugated phosphorodiamidate morpholino restored dystrophin to >50% normal levels in skeletal muscle, and 15% in cardiac muscle. This was associated with greatly reduced serum creatine kinase levels, near-normal histology, and functional improvement of skeletal muscle. Our results demonstrate for the first time that regular 1-year administration of peptide-conjugated phosphorodiamidate morpholino can be safely applied to achieve significant therapeutic effects in an animal model.
Exon skipping has demonstrated great potential for treating Duchenne muscular dystrophy (DMD) and other diseases. We have developed a drug-screening system using C2C12 myoblasts expressing a reporter green fluorescent phosphate (GFP), with its reading frame disrupted by the insertion of a targeted dystrophin exon. A library of 2,000 compounds (Spectrum collection; Microsource Discovery System) was screened to identify drugs capable of skipping targeted dystrophin exons or enhancing the exon-skipping effect by specific antisense oligomers. The 6-thioguanine (6TG) was effective for inducing skipping of both human dystrophin exon 50 (hDysE50) and mouse dystrophin exon 23 (mDysE23) in the cell culture systems and increased exon skipping efficiency (more than threefolds) when used in combination with phosphorodiamidate morpholino oligomers (PMO) in both myoblasts and myotubes. Guanine and its analogues were unable to induce detectable skipping of exon 23 when used alone but enhanced PMO-induced exon skipping significantly (approximately two times) in the muscles of dystrophic mdx mouse in vivo. Our results demonstrate that small-molecule compounds could enhance specific exon skipping synergistically with antisense oligomers for experimental therapy to human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.