Exon skipping has demonstrated great potential for treating Duchenne muscular dystrophy (DMD) and other diseases. We have developed a drug-screening system using C2C12 myoblasts expressing a reporter green fluorescent phosphate (GFP), with its reading frame disrupted by the insertion of a targeted dystrophin exon. A library of 2,000 compounds (Spectrum collection; Microsource Discovery System) was screened to identify drugs capable of skipping targeted dystrophin exons or enhancing the exon-skipping effect by specific antisense oligomers. The 6-thioguanine (6TG) was effective for inducing skipping of both human dystrophin exon 50 (hDysE50) and mouse dystrophin exon 23 (mDysE23) in the cell culture systems and increased exon skipping efficiency (more than threefolds) when used in combination with phosphorodiamidate morpholino oligomers (PMO) in both myoblasts and myotubes. Guanine and its analogues were unable to induce detectable skipping of exon 23 when used alone but enhanced PMO-induced exon skipping significantly (approximately two times) in the muscles of dystrophic mdx mouse in vivo. Our results demonstrate that small-molecule compounds could enhance specific exon skipping synergistically with antisense oligomers for experimental therapy to human diseases.
Quantum dot light‐emitting diodes (QLEDs) represent an exciting new technology that has many desirable attributes when compared to existing organic LEDs (OLEDs) including increased brightness, contrast, and response time. Solution‐based fabrication approaches have the advantage of being able to produce large‐area electronic systems at reduced costs and critical in applications such as large display fabrication and electronics on curved surfaces including low‐profile augmented reality glasses. In this paper, for the first time, a fully solution‐processed transparent inorganic QLED is described. Traditional QLED fabrication methodologies require the use of air‐sensitive materials that make fabrication of these devices challenging and expensive. Instead of using air‐sensitive organic materials, in the approach, nickel oxide (NiO) is used as the hole transport layer and is deposited using a sol‐gel method. Copper doping of the NiO to reduce the turn‐on voltage of the QLED device is investigated. Importantly, the post‐annealing temperature of the sol‐gel process is below 275 °C, which permits the fabrication of QLEDs on a wide range of substrates. The experimental results are concordant with the COMSOL simulation data and demonstrate the feasibility of fabricating fully transparent inorganic QLED devices using a solution‐based process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.