The fundamental understanding of
the activity in heterogeneous
catalysis has long been the major subject in chemistry. This paper
shows the development of a two-step model to understand this activity.
Using the theory of chemical potential kinetics with Brønsted–Evans–Polanyi
relations, the general adsorption energy window is determined from
volcano curves, using which the best catalysts can be searched. Significant
insights into the reasons for catalytic activity are obtained.
Activity and selectivity are both important issues in heterogeneous catalysis and recent experimental results have shown that Ni catalysts doped by gold exhibit high activity for the hydrogenation of acetylene with good selectivity of ethylene formation. To unravel the underlying mechanism for this observation, the general trend of activity and selectivity of Ni surfaces doped by Au, Ag, and Cu has been investigated using density functional theory calculations. Complete energy profiles from C 2 H 2 to C 2 H 4 on Ni(111), Au/Ni(111), Ag/Ni(111) and Cu/Ni(111) are obtained and their turnover frequencies (TOFs) are computed. The results show that acetylene adsorption on Ni catalyst is strong which leads to the low activity while the doping of Au, Ag, and Cu on the Ni catalyst weakens the acetylene adsorption, giving rise to the increase of activity. The selectivity of ethylene formation is also quantified by using the energy difference between the hydrogenation barriers and the absolute value of the adsorption energies of ethylene. It is found that the selectivity of ethylene formation increases by doping Au and Ag, while those of Cu/Ni and Ni are similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.