TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated microglia. Brain microglia underwent apoptosis upon stimulation with TLR4 ligand (LPS), but not TLR2 ligands (Pam3Cys-Ser-Lys4, peptidoglycan, and lipoteichoic acid). Based on studies using TLR2-deficient or TLR4 mutant mice and TLR dominant-negative mutants, we also demonstrated that TLR4, but not TLR2, is necessary for microglial apoptosis. The critical difference between TLR2 and TLR4 signalings in microglia was IFN regulatory factor-3 (IRF-3) activation, followed by IFN-β expression: while TLR4 agonist induced the activation of IRF-3/IFN-β pathway, TLR2 did not. Nevertheless, both TLR2 and TLR4 agonists strongly induced NF-κB activation and NO production in microglia. Neutralizing Ab against IFN-β attenuated TLR4-mediated microglial apoptosis. IFN-β alone, however, did not induce a significant cell death. Meanwhile, TLR2 activation induced microglial apoptosis with help of IFN-β, indicating that IFN-β production following IRF-3 activation determines the apoptogenic action of TLR signaling. TLR4-mediated microglial apoptosis was mediated by MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-β, and was associated with caspase-11 and -3 activation rather than Fas-associated death domain protein/caspase-8 pathway. Taken together, TLR4 appears to signal a microglial apoptosis via autocrine/paracrine IFN-β production, which may act as an apoptotic sensitizer.
The study revealed that linear distribution of multiple vascular cells could be achieved using synthetic bioink with short gelling time and a coaxial printing system.
The purpose of this study was to demonstrate self‐organizing in vitro multicellular tumor spheroid (MCTS) formation in a microfluidic system and to observe the behavior of MCTSs under controlled microenvironment. The employed microfluidic system was designed for simple and effective formation of MCTSs by generating nutrient and oxygen gradients. The MCTSs were composed of cancer cells, vascular endothelial cells, and type I collagen matrix to mimic the in vivo tumor microenvironment (TME). Cell culture medium was perfused to the microfluidic device loaded with MCTSs by a passive fluidic pump at a constant flow rate. The dose response to an MMPs inhibitor was investigated to demonstrate the effects of biochemical substances. The result of long‐term stability of MCTSs revealed that continuous perfusion of cell culture medium is one of the major factors for the successful MCTS formation. A continuous flow of cell culture medium in the in vitro TME greatly affected both the proliferation of cancer cells in the micro‐wells and the sustainability of the endothelial cell‐layer integrity in the lumen of microfluidic channels. Addition of MMP inhibitor to the cell culture medium improved the stability of the collagen matrix by preventing the detachment and shrinkage of the collagen matrix surrounding the MCTSs. In summary, the present constant flow assisted microfluidic system is highly advantageous for long‐term observation of the MCTS generation, tumorous tissue formation process and drug responses. MCTS formation in a microfluidic system may serve as a potent tool for studying drug screening, tumorigenesis and metastasis.
Orbital metastases of hepatocellular carcinoma are rare. The authors report a case of hepatocellular carcinoma metastatic to the orbit. A 56-year-old woman with hepatitis B infection as confirmed serologic test for hepatitis B surface antigen (HBsAg) demonstrated superior displacement of the left eyeball. The clinical appearance of the patient demonstrated an inferior displacement of the right eye. MRI disclosed an orbital mass that extended toward the lower eyelid and into the temporal fossa with destruction of the lateral orbital wall. Upon subsequent abdominal computed tomographic scans, the primary tumor was found in the liver. A biopsy specimen of the orbit showed trabecular structures with eosinophilic cytoplasm. Bile canaliculi and sinusoids were also seen. The tumor cells showed vesicular nuclei with mitoses. Immunohistochemical markers such as high-molecular-weight keratin and alpha-fetoprotein showed a positive response. However, immunohistochemical markers such as low-molecular-weight keratin and polyclonal carcinoembryonic antigen showed as negative. We diagnosed the tumor as a hepatocellular carcinoma metastatic to the orbit. A review of the pertinent literature disclosed relatively few occurrences of hepatocellular carcinoma metastasizing to the orbit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.