TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated microglia. Brain microglia underwent apoptosis upon stimulation with TLR4 ligand (LPS), but not TLR2 ligands (Pam3Cys-Ser-Lys4, peptidoglycan, and lipoteichoic acid). Based on studies using TLR2-deficient or TLR4 mutant mice and TLR dominant-negative mutants, we also demonstrated that TLR4, but not TLR2, is necessary for microglial apoptosis. The critical difference between TLR2 and TLR4 signalings in microglia was IFN regulatory factor-3 (IRF-3) activation, followed by IFN-β expression: while TLR4 agonist induced the activation of IRF-3/IFN-β pathway, TLR2 did not. Nevertheless, both TLR2 and TLR4 agonists strongly induced NF-κB activation and NO production in microglia. Neutralizing Ab against IFN-β attenuated TLR4-mediated microglial apoptosis. IFN-β alone, however, did not induce a significant cell death. Meanwhile, TLR2 activation induced microglial apoptosis with help of IFN-β, indicating that IFN-β production following IRF-3 activation determines the apoptogenic action of TLR signaling. TLR4-mediated microglial apoptosis was mediated by MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-β, and was associated with caspase-11 and -3 activation rather than Fas-associated death domain protein/caspase-8 pathway. Taken together, TLR4 appears to signal a microglial apoptosis via autocrine/paracrine IFN-β production, which may act as an apoptotic sensitizer.
Baicalein (5,6,7-trihydroxyflavone), a flavonoid originated from the root of Chinese medicinal herb Scutellaria baicalensis, has been shown to exert anti-inflammatory and antioxidant effects, and it is a well known inhibitor of 12-lipoxygenase. We have previously reported that neuroglia undergo nitric oxide (NO)-dependent and NO-independent apoptosis upon inflammatory activation. In the current work, we asked how anti-inflammatory baicalein influences autoregulatory apoptosis of activated microglia and their NO production. Baicalein attenuated NO production and apoptosis of lipopolysaccharide (LPS)-activated, but not interferon-␥-activated, BV-2 mouse microglial cells as well as rat primary microglia cultures. The inhibition of NO production by baicalein was due to the suppression of inducible NO synthase induction. Moreover, baicalein inhibited LPSinduced nuclear factor-B (NF-B) activity in BV-2 cells without affecting caspase-11 activation, interferon regulatory factor-1 induction, or signal transducer and activator of transcription-1 phosphorylation. Transfection of BV-2 cells with a p65 subunit of NF-B abolished the apoptosis-attenuating effects of baicalein, indicating that the inhibition of NF-B is a major mechanism of action. Baicalein, however, did not significantly affect NO donor-mediated cytotoxicity, and the apoptosis-attenuating effects of baicalein were independent of 12-lipoxygenase inhibition. Based on our previous findings that activation-induced cell death (AICD) of microglia occurs through two separate pathways (NO-dependent pathway and caspase-11-dependent pathway), our current results suggest that baicalein selectively inhibits the NO-dependent apoptotic pathway of activated microglia by suppressing cytotoxic NO production. Also, the AICD-inhibiting effects of baicalein were specific for the inflammatory stimulus that activated microglia.
Neuropeptides are short-chain peptides found in brain tissue, some of which function as neurotransmitters and others as hormones. Neuropeptides may directly or indirectly modulate glial functions in the CNS. In the present study, effects of various neuropeptides on the viability and inflammatory activation of cultured microglia were investigated. Vasoactive intestinal peptide, substance P, cholecystokinin and neuropeptide Y did not affect microglial cell viability, whereas corticotropin-releasing hormone (CRH) induced a classical apoptosis of mouse microglia in culture as shown by nuclear condensation and fragmentation, terminal deoxynucleotidyl transferase dUTP nick-end labeling, and cleavage of caspase 3 and poly(ADP-ribose) polymerase protein. CRH, however, did not influence nitric oxide production or expression of inflammatory genes including those encoding cytokines and chemokines, indicating that CRH did not affect the inflammatory activation of microglia. The CRH-induced microglial apoptosis appeared to involve a mitochondrial pathway and reactive oxygen species, based on the mitochondrial membrane potential change, caspase 9 activation and sensitivity to antioxidants. Taken together, our results indicate that the stress neuropeptide CRH may regulate neuroinflammation by inducing the apoptosis of microglia, the major cellular source of inflammatory mediators in the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.