We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites, orientations, and lengths. The observation of bond contrast was interpreted by ab initio density functional calculations, which indicated the electron density contribution from the hybridized electronic state of the hydrogen bond. Intermolecular coordination between the dehydrogenated 8-hq and Cu adatoms was also revealed by the submolecular resolution AFM characterization. The direct identification of local bonding configurations by NC-AFM would facilitate detailed investigations of intermolecular interactions in complex molecules with multiple active sites.
Studies of strength development at polymer-polymer interfaces are examined and applications to welding of similar and dissimilar polymers are considered. The fracture properties of the weld, namely, fracture stress, u, fracture energy, GrC, fatigue crack propagation rate daldN, and microscopic aspects of the deformation process are determined using compact tension, wedge cleavage, and double cantilever beam healing experiments. The mechanical properties are related to the structure of the interface via microscopic deformation mechanisms involving disentanglement and bond rupture. The time dependent structure of the welding interface is determined in terms of the molecular dynamics of the polymer chains, the chemical compatibility, and the fractal nature of diffuse interfaces. Several experimental methods are used to probe the weld structure and compare with theoretical scaling laws. Results are given for symmetric amorphous welds, incompatible and compatible asymmetric amorphous welds, incompatible semicrystalline and polymer-metal welds. The relevance of interface healing studies to thermal, friction, solvent and ultrasonic welds is discussed.
Well-defined BiOCl ultrathin nanosheets were prepared by a facile colloidal route, and exhibit high photocatalytic performance toward the oxidation of secondary amines to corresponding imines under visible irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.