Phages as bactericidal agents have been employed for 90 years as a means of treating bacterial infections in humans as well as other species, a process known as phage therapy. In this review we explore both the early historical and more modern use of phages to treat human infections. We discuss in particular the little-reviewed French early work, along with the Polish, US, Georgian and Russian historical experiences. We also cover other, more modern examples of phage therapy of humans as differentiated in terms of disease. In addition, we provide discussions of phage safety, other aspects of phage therapy pharmacology, and the idea of phage use as probiotics.
Pseudomonas aeruginosa bacteriophage KZ is the type representative of the giant phage genus, which is characterized by unusually large virions and genomes. By unraveling the transcriptional map of the ϳ280-kb KZ genome to single-nucleotide resolution, we combine 369 KZ genes into 134 operons. Early transcription is initiated from highly conserved AT-rich promoters distributed across the KZ genome and located on the same strand of the genome. Early transcription does not require phage or host protein synthesis. Transcription of middle and late genes is dependent on protein synthesis and mediated by poorly conserved middle and late promoters. Unique to KZ is its ability to complete its infection in the absence of bacterial RNA polymerase (RNAP) enzyme activity. We propose that transcription of the KZ genome is performed by the consecutive action of two KZ-encoded, noncanonical multisubunit RNAPs, one of which is packed within the virion, another being the product of early genes. This unique, rifampin-resistant transcriptional machinery is conserved within the diverse giant phage genus. IMPORTANCEThe data presented in this paper offer, for the first time, insight into the complex transcriptional scheme of giant bacteriophages. We show that Pseudomonas aeruginosa giant phage KZ is able to infect and lyse its host cell and produce phage progeny in the absence of functional bacterial transcriptional machinery. This unique property can be attributed to two phage-encoded putative RNAP enzymes, which contain very distant homologues of bacterial  and =-like RNAP subunits. T ranscription is driven by DNA-dependent RNA polymerases (RNAPs), which synthesize RNA from DNA templates (1). RNAPs can be classified into two unrelated families: small singlesubunit enzymes (ssRNAPs), encoded by some bacteriophages and also found in mitochondria and chloroplasts, and large multisubunit cellular enzymes (msRNAPs), transcribing genes in bacterial, archaeal, and eukaryal genomes. The catalytic activity of enzymes from both families is accomplished through a common two-metal-ion mechanism. The canonical bacterial msRNAP is a 400-kDa complex consisting of five core subunits (␣ 2 =) which are directed to specific promoter sequences by a variety of factors (2). The two largest RNAP subunits,  and =, contain conserved double-psi beta-barrel (DPBB) domains that together form the active center (3-5). Members of the ssRNAP family rely on different catalytic domains and amino acid motifs for catalysis of the RNA polymerization reaction and are related to DNA polymerases and reverse transcriptases (6, 7). Bacterial RNAPs are inactivated by the antibiotic rifampin (Rif), which acts by binding to the -subunit pocket deep inside the active-site channel, preventing synthesis of RNA sequences longer than 3 to 4 nucleotides (nt) (8).Bacterial RNAPs play a key role during the infection of bacterial cells by bacteriophages. Most known phages do not encode their own RNAP but redirect the host transcription machinery to viral promoters by rel...
The worldwide antibiotic crisis has led to a renewed interest in phage therapy. Since time immemorial phages control bacterial populations on Earth. Potent lytic phages against bacterial pathogens can be isolated from the environment or selected from a collection in a matter of days. In addition, phages have the capacity to rapidly overcome bacterial resistances, which will inevitably emerge. To maximally exploit these advantage phages have over conventional drugs such as antibiotics, it is important that sustainable phage products are not submitted to the conventional long medicinal product development and licensing pathway. There is a need for an adapted framework, including realistic production and quality and safety requirements, that allowsa timely supplying of phage therapy products for ‘personalized therapy’ or for public health or medical emergencies. This paper enumerates all phage therapy product related quality and safety risks known to the authors, as well as the tests that can be performed to minimize these risks, only to the extent needed to protect the patients and to allow and advance responsible phage therapy and research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.