Pseudomonas aeruginosa bacteriophage KZ is the type representative of the giant phage genus, which is characterized by unusually large virions and genomes. By unraveling the transcriptional map of the ϳ280-kb KZ genome to single-nucleotide resolution, we combine 369 KZ genes into 134 operons. Early transcription is initiated from highly conserved AT-rich promoters distributed across the KZ genome and located on the same strand of the genome. Early transcription does not require phage or host protein synthesis. Transcription of middle and late genes is dependent on protein synthesis and mediated by poorly conserved middle and late promoters. Unique to KZ is its ability to complete its infection in the absence of bacterial RNA polymerase (RNAP) enzyme activity. We propose that transcription of the KZ genome is performed by the consecutive action of two KZ-encoded, noncanonical multisubunit RNAPs, one of which is packed within the virion, another being the product of early genes. This unique, rifampin-resistant transcriptional machinery is conserved within the diverse giant phage genus. IMPORTANCEThe data presented in this paper offer, for the first time, insight into the complex transcriptional scheme of giant bacteriophages. We show that Pseudomonas aeruginosa giant phage KZ is able to infect and lyse its host cell and produce phage progeny in the absence of functional bacterial transcriptional machinery. This unique property can be attributed to two phage-encoded putative RNAP enzymes, which contain very distant homologues of bacterial  and =-like RNAP subunits. T ranscription is driven by DNA-dependent RNA polymerases (RNAPs), which synthesize RNA from DNA templates (1). RNAPs can be classified into two unrelated families: small singlesubunit enzymes (ssRNAPs), encoded by some bacteriophages and also found in mitochondria and chloroplasts, and large multisubunit cellular enzymes (msRNAPs), transcribing genes in bacterial, archaeal, and eukaryal genomes. The catalytic activity of enzymes from both families is accomplished through a common two-metal-ion mechanism. The canonical bacterial msRNAP is a 400-kDa complex consisting of five core subunits (␣ 2 =) which are directed to specific promoter sequences by a variety of factors (2). The two largest RNAP subunits,  and =, contain conserved double-psi beta-barrel (DPBB) domains that together form the active center (3-5). Members of the ssRNAP family rely on different catalytic domains and amino acid motifs for catalysis of the RNA polymerization reaction and are related to DNA polymerases and reverse transcriptases (6, 7). Bacterial RNAPs are inactivated by the antibiotic rifampin (Rif), which acts by binding to the -subunit pocket deep inside the active-site channel, preventing synthesis of RNA sequences longer than 3 to 4 nucleotides (nt) (8).Bacterial RNAPs play a key role during the infection of bacterial cells by bacteriophages. Most known phages do not encode their own RNAP but redirect the host transcription machinery to viral promoters by rel...
Since time immemorial, phages—the viral parasites of bacteria—have been protecting Earth’s biosphere against bacterial overgrowth. Today, phages could help address the antibiotic resistance crisis that affects all of society. The greatest hurdle to the introduction of phage therapy in Western medicine is the lack of an appropriate legal and regulatory framework. Belgium is now implementing a pragmatic phage therapy framework that centers on the magistral preparation (compounding pharmacy in the US) of tailor-made phage medicines.
The bacterium ‘Dickeya solani’, an aggressive biovar 3 variant of Dickeya dianthicola, causes rotting and blackleg in potato. To control this pathogen using bacteriophage therapy, we isolated and characterized two closely related and specific bacteriophages, vB_DsoM_LIMEstone1 and vB_DsoM_LIMEstone2. The LIMEstone phages have a T4-related genome organization and share DNA similarity with Salmonella phage ViI. Microbiological and molecular characterization of the phages deemed them suitable and promising for use in phage therapy. The phages reduced disease incidence and severity on potato tubers in laboratory assays. In addition, in a field trial of potato tubers, when infected with ‘Dickeya solani’, the experimental phage treatment resulted in a higher yield. These results form the basis for the development of a bacteriophage-based biocontrol of potato plants and tubers as an alternative for the use of antibiotics.
Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage ϕ15, a ‘T7-like virus’ with a virion-associated exopolysaccharide (EPS) depolymerase. Phage ϕ15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of ϕ15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (104 and 106 pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and ϕ15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy.
Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomonas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology. However, a large fraction of the profound effect on host metabolism could not be attributed to the phage-encoded AMGs. We suggest a potentially crucial role for small, 'non-enzymatic' peptides in metabolism take-over and hypothesize on potential biotechnical applications for such peptides. The highly phage-specific nature of the metabolic impact emphasizes the potential importance of the 'phage diversity' parameter when studying metabolic interactions in complex communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.