Pseudomonas aeruginosa bacteriophage KZ is the type representative of the giant phage genus, which is characterized by unusually large virions and genomes. By unraveling the transcriptional map of the ϳ280-kb KZ genome to single-nucleotide resolution, we combine 369 KZ genes into 134 operons. Early transcription is initiated from highly conserved AT-rich promoters distributed across the KZ genome and located on the same strand of the genome. Early transcription does not require phage or host protein synthesis. Transcription of middle and late genes is dependent on protein synthesis and mediated by poorly conserved middle and late promoters. Unique to KZ is its ability to complete its infection in the absence of bacterial RNA polymerase (RNAP) enzyme activity. We propose that transcription of the KZ genome is performed by the consecutive action of two KZ-encoded, noncanonical multisubunit RNAPs, one of which is packed within the virion, another being the product of early genes. This unique, rifampin-resistant transcriptional machinery is conserved within the diverse giant phage genus. IMPORTANCEThe data presented in this paper offer, for the first time, insight into the complex transcriptional scheme of giant bacteriophages. We show that Pseudomonas aeruginosa giant phage KZ is able to infect and lyse its host cell and produce phage progeny in the absence of functional bacterial transcriptional machinery. This unique property can be attributed to two phage-encoded putative RNAP enzymes, which contain very distant homologues of bacterial  and =-like RNAP subunits. T ranscription is driven by DNA-dependent RNA polymerases (RNAPs), which synthesize RNA from DNA templates (1). RNAPs can be classified into two unrelated families: small singlesubunit enzymes (ssRNAPs), encoded by some bacteriophages and also found in mitochondria and chloroplasts, and large multisubunit cellular enzymes (msRNAPs), transcribing genes in bacterial, archaeal, and eukaryal genomes. The catalytic activity of enzymes from both families is accomplished through a common two-metal-ion mechanism. The canonical bacterial msRNAP is a 400-kDa complex consisting of five core subunits (␣ 2 =) which are directed to specific promoter sequences by a variety of factors (2). The two largest RNAP subunits,  and =, contain conserved double-psi beta-barrel (DPBB) domains that together form the active center (3-5). Members of the ssRNAP family rely on different catalytic domains and amino acid motifs for catalysis of the RNA polymerization reaction and are related to DNA polymerases and reverse transcriptases (6, 7). Bacterial RNAPs are inactivated by the antibiotic rifampin (Rif), which acts by binding to the -subunit pocket deep inside the active-site channel, preventing synthesis of RNA sequences longer than 3 to 4 nucleotides (nt) (8).Bacterial RNAPs play a key role during the infection of bacterial cells by bacteriophages. Most known phages do not encode their own RNAP but redirect the host transcription machinery to viral promoters by rel...
The need to increase sustainability in agriculture, to ensure food security for the future generations, is leading to the emergence of industrial rearing facilities for insects. One promising species being industrially reared as an alternative protein source for animal feed and as a raw material for the chemical industry is the black soldier fly ( Hermetia illucens ). However, scientific knowledge toward the optimization of the productivity for this insect is scarce. One knowledge gap concerns the impact of the microbial community associated with H. illucens on the performance and health of this insect. In this review, the first steps in the characterization of the microbiota in H. illucens and the analysis of substrate-dependent dynamics in its composition are summarized and discussed. Furthermore, this review zooms in on the interactions between microorganisms and the insect during H. illucens development. Finally, attention is paid to how the microbiome research can lead to alternative valorization strategies for H. illucens , such as (i) the manipulation of the microbiota to optimize insect biomass production and (ii) the exploitation of the H. illucens -microbiota interplay for the discovery of new enzymes and novel antimicrobial strategies based on H. illucens immunity using either the whole organism or its molecules. The next decade promises to be extremely interesting for this research field and will see an emergence of the microbiological optimization of H. illucens as a sustainable insect for industrial rearing and the exploitation of its microbiome for novel biotechnological applications.
Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.