Analysis of equine plasma samples to detect the abuse of anabolic steroids can be complicated when the parent steroid is endogenous to the animal. Anabolic steroids are usually administered intramuscularly as synthetic esters and therefore detection of the exogenous esters provides unequivocal proof of illegal administration. An ultra high performance liquid chromatography tandem mass spectrometric (UPLC-MSMS) method for the analysis of esters of testosterone (propionate, phenylpropionate, isocaproate, and decanoate) and boldenone (undecylenate) in equine plasma has been developed. Esters were extracted from equine plasma using a mixture of hexane and ethyl acetate and treated with methoxyamine hydrochloride to form methyloxime derivatives. Metenolone enanthate was used as an internal standard. After chromatographic separation, the derivatized steroid esters were quantified using selected reaction monitoring (SRM). The limit of detection for all of the steroid esters, based on a signal to noise ratio (S/N) of 3:1, was 1-3 pg/mL. The lower limit of quantification (LLOQ) for the all of the steroid esters was 5 pg/mL when 2 mL of plasma was extracted. Recovery of the steroid esters was 85-97% for all esters except for testosterone decanoate which was recovered at 62%. The intra-day coefficient of variation (CV) for the analysis of plasma quality control (QC) samples was less than 9.2% at 40 pg/mL and less than 6.0% at 400 pg/mL. The developed assay was used to successfully confirm the presence of intact testosterone esters in equine plasma samples following intramuscular injection of Durateston® (mixed testosterone esters).
The detection of drugs in human hair samples has been performed by laboratories around the world for many years and the matrix is popular in disciplines, such as workplace drug testing. To date, however, hair has not become a routinely utilised matrix in sports drug detection. The analysis of hair samples offers several potential advantages to doping control laboratories, not least of which are the greatly extended detection window and the ease of sample collection and storage. This article describes the development, validation, and utilisation of a sensitive ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) method for the detection of 50 compounds. This provides significantly improved coverage for those analytes which would be of particular interest if detected in hair, such as anabolic steroid esters and selective androgen receptor modulators (SARMs). Qualitative validation of the method resulted in estimated limits of detection as low as 0.1 pg/mg for the majority of compounds, with all being detected at 2 pg/mg or below. The suitability of the method for the detection of prohibited substances in incurred material was demonstrated by the successful detection of several compounds, such as stanozolol, boldenone undecylenate, clenbuterol, and GW-501516, in genuine equine hair samples. Estimated concentrations of the detected substances ranged from 0.27 to 8.6 pg/mg. The method has been shown to be fit-for-purpose for routine screening of equine hair samples by the analysis of over 400 genuine hair samples.
Fluticasone propionate (FP) is an anti-inflammatory agent with topical and inhaled applications commonly used in the treatment of asthma in steroid-dependent individuals. The drug is used in racehorses to treat Inflammatory Airway Disease; this work was performed in order to advise on its use and detect potential misuse close to racing. Methods were developed for the extraction and analysis of FP from horse plasma and a carboxylic acid metabolite (FP-17βCOOH) from horse urine. The methods utilize ultra high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) in order to detect the extremely low concentrations of analyte present in both matrices. The developed methods were used to analyse plasma and urine samples collected following inhaled administration of FP to six thoroughbred horses. FP was detected in plasma for a minimum of 72 h post-administration and FP-17βCOOH was detected in urine for approximately 18 h post-administration. The results show that it is possible to detect FP in the horse following inhaled administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.