Survival of cochlear sensory epithelial cells may be regulated by inhibitor of differentiation-1 (Id1) and the N-methyl-D-aspartic acid (NMDA) receptor. However, it is unclear whether Id1 and the NMDA receptor are involved in the radiation-mediated survival of rat cochlear sensory epithelial cells. Here, we show that the percentage of apoptotic cells increased, the percentage of cells in the S phase decreased, Id1 mRNA and protein expression decreased and the NMDA receptor subtype 2B (NR2B) mRNA and protein level increased in OC1 cells after radiation. Cells infected with the Id1 gene exhibited higher Id1 mRNA and protein levels and lower NR2B mRNA and protein levels than the control cells. In contrast, after transfection of the Id1 siRNA into OC1 cells, Id1 mRNA and protein expression decreased and NR2B mRNA and protein expression increased relative to that of the control group. Additionally, treatment with ifenprodil for 24 h before radiation reduced apoptosis and increased the percentage of cells in the S phase. Our results suggest that Id1 and NR2B might regulate the survival of OC1 cells following radiation.
In this paper, a new impact-to-impact mapping is constructed to investigate the stochastic response of a nonautonomous vibro-impact system. The significant feature lies in the choice of Poincaré section, which consists of impact surface and codimensional time. Firstly, we construct a new impact-to-impact mapping to calculate the one-step transition probability matrix from a given impact to the next. Then, according to the matrix, we can investigate the stochastic responses of a nonautonomous vibro-impact system at the impact instants. The new impact-to-impact mapping is smooth and it effectively overcomes the nondifferentiability caused by the impact. A linear and a nonlinear nonautonomous vibro-impact systems are analyzed to verify the effectiveness of the strategy. The stochastic P-bifurcations induced by the noise intensity and system parameters are studied at the impact instants. Compared with Monte Carlo simulations, the new impact-to-impact strategy is accurate for nonautonomous vibro-impact systems with arbitrary restitution coefficients.
A restoring-force model is a versatile mathematical model that can describe the relationship between the restoring force and the deformation obtained from a large number of experiments. Over the past few decades, a large body of work on the development of restoring-force models has been reported in the literature. Under high intensity cyclic loadings or seismic excitations, reinforced concrete (RC) structures undergo a wide range of hysteretic deteriorations such as strength, stiffness and pinching degradations. These characteristic behaviors can be described by the multi-parameter Bouc-Wen-Baber-Noori (BWBN) model, which offers a wide range of applicability. This model has been applied for the response prediction and modeling restoring-force behavior in structural and mechanical engineering systems, by adjusting the distribution range of this model’s parameters. However, a major difficulty in utilizing the multi-parameter BWBN model is the parameters’ identification. In this paper, a deep neural network model is used to estimate the hysteresis parameters of the BWBN model. This model is one of the most versatile and widely used general hysteresis models that can describe the hysteretic behavior of RC columns. The experimental data of the RC columns used in this paper are collected from the database of the Pacific Earthquake Engineering Research Center (PEER). Firstly, the hysteretic loop obtained from a physical experiment is described by the BWBN model, and the parameters of the BWBN model are identified via a genetic optimization algorithm. Then a neural network is established by a backpropagation (BP) algorithm for associating the identified BWBN model parameters with physical parameters of the RC column. Finally, the regression analysis of the identified parameters is carried out to obtain the regression characteristics of the RC columns. The trained neural network model can directly identify the parameters of BWBN model based on the physical parameters of RC columns, and is effective and computationally efficient for multi-parameter BWBN model identification. The proposed approach overcomes the difficult problem of identifying the parameters of BWBN model and provides a promising approach for a wider application of this multi-parameter hysteresis model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.