The scattering of lower hybrid (LH) waves due to scrape-off layer (SOL) filaments is investigated. It is revealed that scattering can account for the LH spectral gap without any ad hoc modification to the wave-spectrum. This is shown using a multiscale simulation approach which allows, for the first time, the inclusion of full-wave scattering physics in ray-tracing/Fokker-Planck calculations. In this approach, full-wave scattering probabilities are calculated for a wave interacting with a statistical ensemble of filaments. These probabilities are coupled to ray-tracing equations using radiative transfer (RT) theory. This allows the modeling of scattering along the entire ray-trajectory, which can be important in the multi-pass regime. Simulations are conducted for lower hybrid current drive (LHCD) in Alcator C-Mod, resulting in excellent agreement with experimental current and hard X-ray (HXR) profiles. A region in filament parameter space is identified in which the impact of scattering on LHCD is saturated. Such a state coincides with experimental LHCD measurements, suggesting saturation indeed occurs in C-Mod, and therefore the exact statistical properties of the filaments are not important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.