BackgroundDuring the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection.MethodsPrimary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture.ResultsComparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'.ConclusionsThe results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
This article is available online at http://www.jlr.org lated to body composition, leanness, and obesity. Traits related to fatness are important not only as economic factors in pork production but also because of their association with serious diseases in humans ( 1, 2 ). Pigs share many similarities with humans in physiology and genomes and, therefore, provide a good model to study the genetic determination of complex traits ( 3 ). The study of a porcine model is benefi cial because a number of fatness traits (e.g., "fat area") can be determined quantitatively with great accuracy and reproducibility post mortem, and RNA samples are available for transcriptomic approaches. In humans, indices for obesity are obtained intra vitam (i.e., body mass index or body fat percentage are estimated based on statistical models of measures of near-infrared interactance, body average density measurement, bioelectrical impedance analysis, or anthropometric methods) ( 4 ).Functional genomics provides an insight into the molecular processes underlying phenotypic differences. The analysis of trait-correlated expression levels reveals genes belonging to pathways or networks relevant for the control of quantitative traits. However, holistic expression profi ling does not often discriminate differential expression of the genes as either an effect or a cause of variation.Genome-wide association studies (GWAS) in large natural populations of unrelated individuals have resulted in the association of many genes with complex traits (http:// www. genome.gov/gwastudies). Unfortunately, for a conAbstract Traits related to fatness, important as economic factors in pork production, are associated with serious diseases in humans. Genetical genomics is a useful approach for studying the effects of genetic variation at the molecular level in biological systems. Here we applied a whole-genome association analysis to hepatic gene expression traits, focusing on transcripts with expression levels that correlated with fatness traits in a porcine model. A total of 150 crossbred pigs [Pietrain×(German Large White × German Landrace)] were studied for transcript levels in the liver. The 24K Affymetrix expression microarrays and 60K Illumina single nucleotide polymorphism (SNP) chips were used for genotyping. A total of 663 genes, whose expression signifi cantly correlated with the trait "fat area," were analyzed for enrichment of functional annotation groups as defi ned in the Ingenuity Pathways Knowledge Base (IPKB). Genes involved in metabolism of various macromolecules and nutrients as well as functions related to dynamic cellular processes correlated with fatness traits. Regions affecting the transcription levels of these genes were mapped and revealed 4,727 expression quantitative trait loci (eQTL) at P < 10 The metabolic activities of the liver are essential for providing fuel to the peripheral organs. Most components absorbed by the intestine pass through the liver, which enables it to regulate the levels of many metabolites in the blood. Storage, ...
Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Important biological pathways that affect energy metabolism and metabolic fiber type in muscle cells may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber (STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene co-expression network analysis within both breeds identified several co-expression modules that were associated with the proportion of different fiber types, mitochondrial respiratory activity, and ATP metabolism. In particular, Duroc results revealed strong correlations between mitochondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = -0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the protein-kinase-activity enriched module were positively correlated with STO (r=0.93), while negatively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle and for breed-dependent molecular pathways in muscle cell fibers.
Abstract.Cattle temperament, which describes individual behaviour differences with regard to a stressor or environmental challenge, is known for its impact on working safety, adaptability to new housing conditions, animal productivity and for evaluation of animal welfare. However, successful use of temperament in animal breeding and husbandry to improve keeping conditions in general or animal welfare in particular, requires the availability of informative and reproducible phenotypes and knowledge about the genetic modulation of these traits. However, the knowledge about genetic influences on cattle temperament is still limited. In this review, an outline is given for the interdependence between production systems and temperament as well as for the phenotyping of cattle temperament based on both behaviour tests and observations of behaviour under production conditions. In addition, the use of temperament as a selection criterion is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.