The human ubiquitin ligase HUWE1 has key roles in tumorigenesis, yet it is unkown how its activity is regulated. We present the crystal structure of a C-terminal part of HUWE1, including the catalytic domain, and reveal an asymmetric auto-inhibited dimer. We show that HUWE1 dimerizes in solution and self-associates in cells, and that both occurs through the crystallographic dimer interface. We demonstrate that HUWE1 is inhibited in cells and that it can be activated by disruption of the dimer interface. We identify a conserved segment in HUWE1 that counteracts dimer formation by associating with the dimerization region intramolecularly. Our studies reveal, intriguingly, that the tumor suppressor p14ARF binds to this segment and may thus shift the conformational equilibrium of HUWE1 toward the inactive state. We propose a model, in which the activity of HUWE1 underlies conformational control in response to physiological cues—a mechanism that may be exploited for cancer therapy.DOI: http://dx.doi.org/10.7554/eLife.21036.001
Gephyrin is a trimeric protein involved in the final steps of molybdenum-cofactor (Moco) biosynthesis and in the clustering of inhibitory glycine and GABAA receptors at postsynaptic specializations. Each protomer consists of stably folded domains (referred to as the G and E domains) located at either terminus and connected by a proteolytically sensitive linker of ∼150 residues. Both terminal domains can oligomerize in their isolated forms; however, in the context of the full-length protein only the G-domain trimer is permanently present, whereas E-domain dimerization is prevented. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) reveal a high degree of flexibility in the structure of gephyrin. The results imply an equilibrium between compact and extended conformational states in solution, with a preference for compact states. CD spectroscopy suggests that a partial compaction is achieved by interactions of the linker with the G and E domains. Taken together, the data provide a rationale for the role of the linker in the overall structure and the conformational dynamics of gephyrin.
Graphical Abstract Highlights d The LisH motif of muskelin acts as a dimerization interface d The generic binding site in the discoidin domain mediates a head-to-tail interaction d Muskelin forms a tetramer as a dimer of dimers via both interfaces d An impaired LisH dimerization relocates muskelin from the cytoplasm to the nucleus In Brief Muskelin organizes the retrograde transport of certain GABA A receptors. In the crystal structure of the N-terminal discoidin domain and LisH motif, Delto et al. observe a LisH-mediated dimer. They demonstrate that this interaction is required for muskelin tetramerization and determines cellular localization of muskelin. Accession Numbers 4OYU Delto et al., 2015, Structure 23, 364-373 February 3, SUMMARYNeurons regulate the number of surface receptors by balancing the transport to and from the plasma membrane to adjust their signaling properties. The protein muskelin was recently identified as a key factor guiding the transport of a1 subunit-containing GABA A receptors. Here we present the crystal structure of muskelin, comprising its N-terminal discoidin domain and Lis1-homology (LisH) motif. The molecule crystallized as a dimer with the LisH motif exclusively mediating oligomerization. Our subsequent biochemical analyses confirmed that the LisH motif acts as a dimerization element in muskelin. Together with an intermolecular head-to-tail interaction, the LisH-dependent dimerization is required to assemble a muskelin tetramer. Intriguingly, our cellular studies revealed that the loss of this dimerization results in a complete redistribution of muskelin from the cytoplasm to the nucleus and impairs muskelin's function in GABA A receptor transport. These studies demonstrate that the LisH-dependent dimerization is a crucial factor for muskelin function.
Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity and specificity in this crucial ligase are incompletely understood. Here, we unravel the determinants of ubiquitin recognition by the catalytic domain of E6AP and assign them to particular steps in the catalytic cycle. We identify a functionally critical interface that is specifically required during the initial formation of a thioester-linked intermediate between the C terminus of ubiquitin and the ligase-active site. This interface resembles the one utilized by NEDD4-type enzymes, indicating that it is widely conserved across HECT ligases, independent of their linkage specificities. Moreover, we uncover surface regions in ubiquitin and E6AP, both in the N- and C-terminal portions of the catalytic domain, that are important for the subsequent reaction step of isopeptide bond formation between two ubiquitin molecules. We decipher key elements of linkage specificity, including the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site Lys-48. Intriguingly, mutation of Glu-51, a single residue within this region, permits formation of alternative chain types, thus pointing to a key role of ubiquitin in conferring linkage specificity to E6AP. We speculate that substrate-assisted catalysis, as described previously for certain RING-associated ubiquitin–conjugating enzymes, constitutes a common principle during linkage-specific ubiquitin chain assembly by diverse classes of ubiquitination enzymes, including HECT ligases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.