Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs.
Synaptic plasticity, the ability of synapses to change in strength, requires alterations in synaptic molecule compositions over time, and synapses undergo selective modifications on stimulation. Molecular motors operate in sorting/transport of neuronal proteins; however, the targeting mechanisms that guide and direct cargo delivery remain elusive. We addressed the impact of synaptic transmission on the regulation of intracellular microtubule (MT)-based transport. We show that increased neuronal activity, as induced through GlyR activity blockade, facilitates tubulin polyglutamylation, a posttranslational modification thought to represent a molecular traffic sign for transport. Also, GlyR activity blockade alters the binding of the MT-associated protein MAP2 to MTs. By using the kinesin (KIF5) and the postsynaptic protein gephyrin as models, we show that such changes of MT tracks are accompanied by reduced motor protein mobility and cargo delivery into neurites. Notably, the observed neurite targeting deficits are prevented on functional depletion or gene expression knockdown of neuronal polyglutamylase. Our data suggest a previously undescribed concept of synaptic transmission regulating MT-dependent cargo delivery.activity-dependent ͉ neuron ͉ polyglutamylation ͉ synapse ͉ strychnine
Summary Intracellular transport regulates protein turnover including endocytosis. Because of the spatial segregation of F-actin and microtubules, internalized cargo vesicles need to employ retrograde myosin and dynein motors to traverse both cytoskeletal compartments. Factors specifying cargo delivery across both tracks remain unknown. We identified muskelin to interconnect retrograde F-actin- and microtubule-dependent GABAA receptor (GABAAR) trafficking. GABAARs regulate synaptic transmission, plasticity, and network oscillations. GABAAR α1 and muskelin interact directly, undergo neuronal cotransport, and associate with myosin VI or dynein motor complexes in subsequent steps of GABAAR endocytosis. Inhibition of either transport route selectively interferes with receptor internalization or degradation. Newly generated muskelin KO mice display depletion of both transport steps and a high-frequency ripple oscillation phenotype. A diluted coat color of muskelin KOs further suggests muskelin transport functions beyond neurons. Our data suggest the concept that specific trafficking factors help cargoes to traverse both F-actin- and microtubule compartments, thereby regulating their fate.
Significance Synapses form and change in response to neuronal activity, and they dynamically exchange transmembrane proteins over time. Most synaptic proteins are synthesized in the cell body and undergo long-distance vesicular transport powered by molecular motors along microtubules. Here we show that two synaptic key proteins (GluA2 and N-cadherin) are simultaneously delivered within distinct transport vesicles through motor proteins. Our data suggest that multidomain cargo adaptors tether synaptic proteins destined for the same subcellular compartment. We propose that vesicular presorting is an alternative mechanism to efficiently supply synapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.