The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\mu}+ and {\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
We present a new design study of the neutrino Super Beam based on the Superconducting Proton Linac at CERN. This beam is aimed at megaton mass physics, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane in France, with a baseline of 130 km. The aim of this proposed facility is to study CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam presents several unprecedented challenges, related to the high primary proton beam power (4 MW), the high repetition rate (50 Hz), and the low kinetic energy of the protons (4.5 GeV). The design is completed by a study of all the main components of the system, starting from the transport system to guide the beam to the target up to the beam dump. This is the first complete study of a neutrino beam based on a pebble-bed target capable of standing the large heat deposition of MW class proton beams.
The rolling bearings used in various industrial applications are exposed to fatigue failure during their operation. Generally, in a practical application, the ISO 281:2007 standard is used for fatigue life assessments of rolling bearings. The application of the formula given in this standard requires knowledge concerning the basic dynamic load rating C. The natural question is raised of whether it is possible to omit the time-consuming experimental tests while still effectively calculating the fatigue load or the load capacity of the bearings. In the paper, the authors propose the application of analytical formulas for stresses in the contact area and its vicinity, and the usage of the multiaxial high-cycle fatigue hypothesis to estimate the maximal fatigue load for the rolling bearings. In the proposed methodology, only the knowledge concerning the fatigue properties of the material and geometry characteristics of the analyzed bearings are demanded. The effectiveness of the authors’ proposal is verified for arbitrarily chosen bearings. The observed discrepancy between the catalogue fatigue load (SKF catalogue) and numerically calculated fatigue load usually does not exceed 10%, which is fully acceptable from an engineering point of view and justifies the approach proposed in the paper. The proposed methodology can be used for the prediction of the fatigue life and optimization of the rolling bearings.
Flat ends of boilers with stress relief grooves have been used for many years. The existing standards set the value for the endplate thickness and admissible range of values for radius of the groove and the minimum thickness of the endplate under the relief groove. However, the codes do not specify the optimal parameters values for the endplate with stress relief groove. In this paper, the authors study the optimal choice of parameters for circular groove, and then propose its shape modification to elliptical, which considerably decreases stress concentration appearing in the zone of the groove. In the next step, the elliptical shape is replaced by the groove modelled by two spline functions, which results in further reduction of stress concentration. Finally, the groove with shape including several spline functions is proposed as an optimal one. In the performed study, the finite element modelling and the simple search method in optimisation procedures are used.
Application of flat welded ends with stress relief grooves in high-pressure vessels is a common alternative to use of dished vessel ends. It is well established and follows calculation rules given in codes: EN-12952-3 [1], EN-13445-3 [2], or in ASME code [3]. However the calculation rules do not give any definite answer what should be the choice of parameters defining a circular stress relief groove, for example, position of the groove and its radius. Usually the choice of them relies on engineering practice. The present paper clearly shows the influence of this choice on stress concentration in the cylinder-endplate junction area. The results of numerical study are verified in experimental investigations performed for a cylindrical high-pressure vessel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.