The combustion phenomena are always complex in nature due to the involvement of complex series and parallel reactions. There are various methods that are involved in analyzing combustion phenomena. Viscosity is the first and foremost factor that acts as the DNA of fuel. By evaluating the viscosity, it is possible initially to understand the combustion phenomena. Thermophysical and transport properties are helpful during the intensification of the combustion process. Combustion experiments are economically infeasible and time-consuming processes. Combustion simulations demand excellent computational facilities with detailed knowledge of chemical kinetics. So far, the majority of researchers have focused on analyzing coal combustion phenomena, whereas less work has been carried out on liquid fuels, especially biodiesel combustion analysis. Traditional engine testing provides only performance parameters, and it fails to have oversight of the thermodynamic aspects. The application of thermal analysis methods in combustion research is useful in the design, modeling, and operation of the systems. Such investigations are carried out extensively in the combustor, engine, and process industries. The use of differential scanning calorimetry (DSC) and thermogravimetry (TG) to assess the properties of biofuels has been attracting researchers in recent years. The main objective of this paper is to discuss the application of TGA and DSC to analyze heat flow, enthalpy, thermal stability, and combustion indexes. Moreover, this paper reviews some of the other aspects of the kinetics of combustion, transport properties’ evaluation, and combustion simulations for biodiesels and their blends. TG curves indicate two phases of decomposition for diesel and three phases for biofuel. The B-20 blend’s (20% biodiesel and 80% diesel) performance was found to be similar to that of diesel with the combustion index and intensity of combustion nearly comparable with diesel. It is thermally more stable with a high offset temperature, confirming a longer combustion duration. A case study reported in this work showed diesel and B20 JOME degradation start from 40 °C, whereas jatropha oil methyl ester (JOME) degradation starts from 140 °C. JOME presents more decomposition steps with high decomposition temperatures, indicative of more stable compound formation due to the oxidation process. The peak temperature of combustion for diesel, JOME, and B20 JOME are 250.4 °C, 292.1 °C, and 266.5 °C, respectively. The ignition index for the B-20 blend is 73.73% more than that of diesel. The combustion index for the B20 blend is 37.81% higher than diesel. The B20 blend exhibits high enthalpy, better thermal stability, and a reduced peak temperature of combustion with an improved combustion index and intensity of combustion nearly comparable to diesel.
Nano fluids are widely used today for various energy-related applications such as coolants, refrigerants, and fuel additives. New coolants and design modifications are being explored due to renewed interest in improving the working fluid properties of heat exchangers. Several studies have investigated nanofluids to enhance radiator and heat exchanger performance. A new class of coolants includes single, binary, and tertiary nanoparticle-based hybrid nano-coolants using ethylene glycol/deionized water combinations as base fluids infused with different nanoparticles. This review article focuses on the hydrothermal behavior of heat exchangers (radiators for engine applications) with mono/hybrid nanofluids. The first part of the review focuses on the preparation of hybrid nanofluids, highlighting the working fluid properties such as density, viscosity, specific heat, and thermal conductivity. The second part discusses innovative methodologies adopted for accomplishing higher heat transfer rates with relatively low-pressure drop and pump work. The third part discusses the applications of mono and hybrid nanofluids in engine radiators and fuel additives in diesel and biodiesel blends. The last part is devoted to a summary of the research and future directions using mono and hybrid nanofluids for various cooling applications.
In the current study, multiwalled carbon nanotubes (MWCNTs) and carbon particles (micron size) were employed to create carbon particle dispersions. At different impact angles, the erosion of abrasive particles in an air jet is examined. Carbon particles dispersed across a metal matrix increased the fibre bonding but decreased the mechanical strength. In the sample, carbon nanotubes make up 5% of the total. The strength of carbon nanotubes in matrix materials overcomes the growth in carbon particle length significantly. When carbon particles are present, the matrix material weakens and becomes brittle. Due to the effect of attrition on exposed surfaces, materials that are subjected to particle impingement are more vulnerable to erosive processes. Carbon has significantly improved the matrix material’s surface property. The research findings significantly affect 5% of the CNT composite. At 30°, 0.0033 g/min showed the least proportion of abrasive wear. Erosive wear decreases at the lowest impingement angle but increases as the impact angle increases. Since it causes brittleness, increasing the weight percentage of carbon particles is discouraged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.