Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration.
Coltsfoot (<em>Tussilago farfara</em> L.) is a common species, widely used in European and Chinese traditional medicine for the treatment of respiratory diseases. However, raw material from this plant contains hepatotoxic pyrrolizidine alkaloids (PAs). The aim of the study was to determine the variability of the level of PAs (senkirkine and senecionine) in leaves of coltsfoot originated from natural populations in Poland. In the phytochemical analysis, 20 samples of <em>T. farfara</em> were used. This plant material was obtained from the Garden of Medicinal Plants in Plewiska near Poznań and originated from different regions of Poland. Coltsfoot leaves were harvested in the middle of July of 2010 and then dried at room temperature. The alkaloid content was detected using the HPLC-DAD method. The amount of PAs in leaves of <em>T. farfara</em> changed in a wide range from 0.06 to 1.04 μg g<sup>−1</sup> of dry matter (DM). The content of senkirkine and senecionine was positively correlated (<em>r</em> = 0.68, <em>P</em> = 0.001). There was no statistically significant correlation between the amount of PAs as well as leaf weight and water content in leaves of <em>T. farfara</em>. Our results showed that a medium-sized leaf of coltsfoot (0.33 g DM) may contain from 0.02 to 0.34 μg of PAs (on average 0.14 μg). The level of PAs was not associated with the region of Poland, but phytochemical similarity of samples was usually visible at the local scale. Coltsfoot leaves are characterized by a high variability of the content of toxic PAs, much higher than in the case of the main active compounds, especially flavonoids and mucilage.<br /> This phytochemical variability is mainly genetically determined (samples came from a garden collection), and it can be increased by environmental factors. Our investigations indicate that Polish natural populations of <em>T. farfara</em> may provide raw material with a low level of toxic PAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.