Summary
Global warming is a major abiotic stress factor, which limit rice production. Exploiting the genetic basis of the natural variation in heat resistance at different reproductive stages among diverse exotic Oryza germplasms can help breeding heat‐resistant rice cultivars. Here, we identified a stable quantitative trait locus (QTL) for heat tolerance at the heading stage on chromosome 5 (qHTH5) in O. rufipogon Griff. The corresponding gene, HTH5, pertains to the pyridoxal phosphate‐binding protein PLPBP (formerly called PROSC) family, which is predicted to encode pyridoxal phosphate homeostasis protein (PLPHP) localized to the mitochondrion. Overexpression of HTH5 increased the seed‐setting rate of rice plants under heat stress at the heading stage, whereas suppression of HTH5 resulted in greater susceptibility to heat stress. Further investigation indicated that HTH5 reduces reactive oxygen species accumulation at high temperatures by increasing the heat‐induced pyridoxal 5'‐phosphate (PLP) content. Moreover, we found that two SNPs located in the HTH5 promoter region are involved with its expression level and associated with heat tolerance diversity. These findings suggest that the novel gene HTH5 might have great potential value for heightening rice tolerance to heat stress to the on‐going threat of global warming.
Heat stress (HS) caused by high-temperature weather seriously threatens international food security. Indeed, as an important food crop in the world, the yield and quality of rice are frequently affected by HS. Therefore, clarifying the molecular mechanism of heat tolerance and cultivating heat-tolerant rice varieties is urgent. Here, we summarized the identified quantitative trait loci (Quantitative Trait Loci, QTL) and cloned rice heat tolerance genes in recent years. We described the plasma membrane (PM) response mechanisms, protein homeostasis, reactive oxygen species (ROS) accumulation, and photosynthesis under HS in rice. We also explained some regulatory mechanisms related to heat tolerance genes. Taken together, we put forward ways to improve heat tolerance in rice, thereby providing new ideas and insights for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.