Advocates for Neuro-Symbolic Artificial Intelligence (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We conduct a structured review of studies implementing NeSy for NLP, with the aim of answering the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to higher promise scores. We find that systems where logic is compiled into the neural network lead to the most NeSy goals being satisfied, while other factors such as knowledge representation, or type of neural architecture do not exhibit a clear correlation with goals being met. We find many discrepancies in how reasoning is defined, specifically in relation to human level reasoning, which impact decisions about model architectures and drive conclusions which are not always consistent across studies. Hence we advocate for a more methodical approach to the application of theories of human reasoning as well as the development of appropriate benchmarks, which we hope can lead to a better understanding of progress in the field. We make our data and code available on github for further analysis.11 https://github.com/kyleiwaniec/neuro-symbolic-ai-systematic-review
PurposeThe purpose of this paper is to present a showcase of semantic time series processing which demonstrates how this technology can improve time series processing and community building by the use of a dedicated language.Design/methodology/approachThe authors have developed a new semantic time series processing language and prepared showcases to demonstrate its functionality. The assumption is an environmental setting with data measurements from different sensors to be distributed to different groups of interest. The data are represented as time series for water and air quality, while the user groups are, among others, the environmental agency, companies from the industrial sector and legal authorities.FindingsA language for time series processing and several tools to enrich the time series with meta‐data and for community building have been implemented in Python and Java. Also a GUI for demonstration purposes has been developed in PyQt4. In addition, an ontology for validation has been designed and a knowledge base for data storage and inference was set up. Some important features are: dynamic integration of ontologies, time series annotation, and semantic filtering.Research limitations/implicationsThis paper focuses on the showcases of time series semantic language (TSSL), but also covers technical aspects and user interface issues. The authors are planning to develop TSSL further and evaluate it within further research projects and validation scenarios.Practical implicationsThe research has a high practical impact on time series processing and provides new data sources for semantic web applications. It can also be used in social web platforms (especially for researchers) to provide a time series centric tagging and processing framework.Originality/valueThe paper presents an extended version of the paper presented at iiWAS2012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.