This study was endeavoured to contribute in furthering our understanding of the molecular epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by sequencing and analysing the first full-length genome sequences obtained from 48 coronavirus disease-2019 (COVID-19) patients in five districts in Western Serbia in the period April 2020–July 2020. SARS-CoV-2 sequences in Western Serbia distinguished from the Wuhan sequence in 128 SNPs in total. The phylogenetic structure of local SARS-CoV-2 isolates suggested the existence of at least four distinct groups of SARS-CoV-2 strains in Western Serbia. The first group is the most similar to the strain from Italy. These isolates included two 20A sequences and 15−30 20B sequences that displayed a newly occurring set of four conjoined mutations. The second group is the most similar to the strain from France, carrying two mutations and belonged to 20A clade. The third group is the most similar to the strain from Switzerland carrying four co-occurring mutations and belonging to 20B clade. The fourth group is the most similar to another strain from France, displaying one mutation that gave rise to a single local isolate that belonged to 20A clade.
The photosynthetically active green leaf (GL) and non-active white leaf (WL) tissues of variegated Pelargonium zonale provide an excellent model system for studying processes associated with photosynthesis and sink-source interactions, enabling the same microenvironmental conditions. By combining differential transcriptomics and metabolomics, we identified the main differences between these two metabolically contrasting tissues. Genes related to photosynthesis and associated pigments, the Calvin–Benson cycle, fermentation, and glycolysis were strongly repressed in WL. On the other hand, genes related to nitrogen and protein metabolism, defence, cytoskeletal components (motor proteins), cell division, DNA replication, repair and recombination, chromatin remodelling, and histone modifications were upregulated in WL. A content of soluble sugars, TCA intermediates, ascorbate, and hydroxybenzoic acids was lower, while the concentration of free amino acids (AAs), hydroxycinnamic acids, and several quercetin and kaempferol glycosides was higher in WL than in GL. Therefore, WL presents a carbon sink and depends on photosynthetic and energy-generating processes in GL. Furthermore, the upregulated nitrogen metabolism in WL compensates for the insufficient energy from carbon metabolism by providing alternative respiratory substrates. At the same time, WL serves as nitrogen storage. Overall, our study provides a new genetic data resource for the use of this excellent model system and for ornamental pelargonium breeding and contributes to uncovering molecular mechanisms underlying variegation and its adaptive ecological value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.