With the advantage of fast calculation and map resources on cloud control system (CCS), cloud-based predictive cruise control (CPCC) for heavy trucks has great potential to improve energy efficiency, which is significant to achieve the goal of national carbon neutrality. However, most investigations focus on the on-board predictive cruise control (PCC) system, lack of research on CPCC architecture under CCS. Besides, the current PCC algorithms have the problems of a single control target and high computational complexity, which hinders the improvement of the control effect. In this paper, a layered architecture based on CCS is proposed to effectively address the realtime computing of CPCC system and the deployment of its algorithm on vehicle-cloud. In addition, based on the dynamic programming principle and the proposed road point segmentation method (RPSM), a PCC algorithm is designed to optimize the speed and gear of heavy trucks with slope information. Simulation results show that the CPCC system can adaptively control vehicle driving through the slope prediction, with fuel-saving rate of 6.17% in comparison with the constant cruise control. Also, compared with other similar algorithms, the PCC algorithm can make the engine operate more in the efficient zone by cooperatively optimizing the gear and speed. Moreover, the RPSM algorithm can reconfigure the road in advance, with a 91% roadpoint reduction rate, significantly reducing algorithm complexity. Therefore, this study has essential research significance for the economic driving of heavy trucks and the promotion of the CPCC system.
With the application of mobile communication technology in the automotive industry, intelligent connected vehicles equipped with communication and sensing devices have been rapidly promoted. The road and traffic information perceived by intelligent vehicles has important potential application value, especially for improving the energy-saving and safe-driving of vehicles as well as the efficient operation of traffic. Therefore, a type of vehicle control technology called predictive cruise control (PCC) has become a hot research topic. It fully taps the perceived or predicted environmental information to carry out predictive cruise control of vehicles and improves the comprehensive performance of the vehicle-road system. Most existing reviews focus on the economical driving of vehicles, but few scholars have conducted a comprehensive survey of PCC from theory to the status quo. In this paper, the methods and advances of PCC technologies are reviewed comprehensively by investigating the global literature, and typical applications under a cloud control system (CCS) are proposed. Firstly, the methodology of PCC is generally introduced. Then according to typical scenarios, the PCC-related research is deeply surveyed, including freeway and urban traffic scenarios involving traditional vehicles, new energy vehicles, intelligent vehicles, and multi-vehicle platoons. Finally, the general architecture and three typical applications of the cloud control system (CCS) on PCC are briefly introduced, and the prospect and future trends of PCC are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.