We present the DryVR framework for verifying hybrid control systems that are described by a combination of a black-box simulator for trajectories and a white-box transition graph specifying mode switches. The framework includes (a) a probabilistic algorithm for learning sensitivity of the continuous trajectories from simulation data, (b) a bounded reachability analysis algorithm that uses the learned sensitivity, and (c) reasoning techniques based on simulation relations and sequential composition, that enable verification of complex systems under long switching sequences, from the reachability analysis of a simpler system under shorter sequences. We demonstrate the utility of the framework by verifying a suite of automotive benchmarks that include powertrain control, automatic transmission, and several autonomous and ADAS features like automatic emergency braking, lane-merge, and auto-passing controllers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.