Simulation-based verification algorithms can provide formal safety guarantees for nonlinear and hybrid systems. The previous algorithms rely on user provided model annotations called discrepancy function, which are crucial for computing reachtubes from simulations. In this paper, we eliminate this requirement by presenting an algorithm for computing piece-wise exponential discrepancy functions. The algorithm relies on computing local convergence or divergence rates of trajectories along a simulation using a coarse over-approximation of the reach set and bounding the maximal eigenvalue of the Jacobian over this over-approximation. The resulting discrepancy function preserves the soundness and the relative completeness of the verification algorithm. We also provide a coordinate transformation method to improve the local estimates for the convergence or divergence rates in practical examples. We extend the method to get the input-to-state discrepancy of nonlinear dynamical systems which can be used for compositional analysis. Our experiments show that the approach is effective in terms of running time for several benchmark problems, scales reasonably to larger dimensional systems, and compares favorably with respect to available tools for nonlinear models.
We present the DryVR framework for verifying hybrid control systems that are described by a combination of a black-box simulator for trajectories and a white-box transition graph specifying mode switches. The framework includes (a) a probabilistic algorithm for learning sensitivity of the continuous trajectories from simulation data, (b) a bounded reachability analysis algorithm that uses the learned sensitivity, and (c) reasoning techniques based on simulation relations and sequential composition, that enable verification of complex systems under long switching sequences, from the reachability analysis of a simpler system under shorter sequences. We demonstrate the utility of the framework by verifying a suite of automotive benchmarks that include powertrain control, automatic transmission, and several autonomous and ADAS features like automatic emergency braking, lane-merge, and auto-passing controllers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.