Background: Immune checkpoint blockades (ICBs) are characterized by a durable clinical response and better tolerability in patients with a variety of advanced solid tumors. However, we not infrequently encounter patients with hyperprogressive disease (HPD) exhibiting paradoxically accelerated tumor growth with poor clinical outcomes. This study aimed to investigate implications of clinical factors and immune cell composition on different tumor responses to immunotherapy in patients with non-small cell lung cancer (NSCLC).Methods: This study evaluated 231 NSCLC patients receiving ICBs between January 2014 and May 2018. HPD was defined as a >2-fold tumor growth kinetics ratio during ICB therapy and time-to-treatment failure of ≤ 2 months. We analyzed clinical data, imaging studies, periodic serologic indexes, and immune cell compositions in tumors and stromata using multiplex immunohistochemistry.Results: Of 231 NSCLC patients, PR/CR and SD were observed in 50 (21.6%) and 79 (34.2%) patients, respectively and 26 (11.3%) patients met the criteria for HPD. Median overall survival in poor response groups (HPD and non-HPD PD) was extremely shorter than region disease-controlled group (SD and PR/CR) (5.5 and 6.1 months vs. 16.2 and 18.3 months, respectively, P= 0.000). In multivariate analysis, HPD were significantly associated with heavy smoker (p=0.0072), PD-L1 expression ≤1% (0.0355), and number of metastatic site ≥3 (0.0297). Among the serologic indexes including NLR, PLR, CAR, and LDH, only CAR had constantly significant correlations with HPD at the beginning of prior treatment, immunotherapy, and at the 1st tumor assessment. The number of CD4+ effector T cells and CD8+ cytotoxic T cells, and CD8+/PD-1+ tumor-infiltrating lymphocytes (TIL) tended to be smaller, especially in stromata of HPD group. More M2-type macrophages expressing CD14, CD68 and CD163 in the stromal area and markedly fewer CD56+ NK cells in the intratumoral area were observed in HPD group.Conclusions: Our study suggests that not only clinical factors including heavy smoker, very low PD-L1 expression, multiple metastases, and CAR index, but also fewer CD8+/PD-1+ TIL and more M2 macrophages in the tumor microenvironment are significantly associated with the occurrence of HPD in the patients with advanced/metastatic NSCLC receiving immunotherapy.
Accurate prediction of non-small cell lung cancer (nScLc) prognosis after surgery remains challenging. the cox proportional hazard (pH) model is widely used, however, there are some limitations associated with it. in this study, we developed novel neural network models called binned time survival analysis (DeepBTS) models using 30 clinico-pathological features of surgically resected NSCLC patients (training cohort, n = 1,022; external validation cohort, n = 298). We employed the root-mean-square error (in the supervised learning model, s-DeepBtS) or negative log-likelihood (in the semi-unsupervised learning model, su-DeepBtS) as the loss function. the su-DeepBtS algorithm achieved better performance (c-index = 0.7306; AUC = 0.7677) than the other models (Cox PH: C-index = 0.7048 and AUC = 0.7390; s-DeepBtS: c-index = 0.7126 and AUC = 0.7420). The top 14 features were selected using su-DeepBTS model as a selector and could distinguish the low-and high-risk groups in the training cohort (p = 1.86 × 10 −11) and validation cohort (p = 1.04 × 10 −10). When trained with the optimal feature set for each model, the su-DeepBtS model could predict the prognoses of nScLc better than the traditional model, especially in stage i patients. follow-up studies using combined radiological, pathological imaging, and genomic data to enhance the performance of our model are ongoing.
Background Immune checkpoint blockades (ICBs) are characterized by a durable clinical response and better tolerability in patients with a variety of advanced solid tumors. However, we not infrequently encounter patients with hyperprogressive disease (HPD) exhibiting paradoxically accelerated tumor growth with poor clinical outcomes. This study aimed to investigate implications of clinical factors and immune cell composition on different tumor responses to immunotherapy in patients with non-small cell lung cancer (NSCLC). Methods This study evaluated 231 NSCLC patients receiving ICBs between January 2014 and May 2018. HPD was defined as a > 2-fold tumor growth kinetics ratio during ICB therapy and time-to-treatment failure of ≤2 months. We analyzed clinical data, imaging studies, periodic serologic indexes, and immune cell compositions in tumors and stromata using multiplex immunohistochemistry. Results Of 231 NSCLC patients, PR/CR and SD were observed in 50 (21.6%) and 79 (34.2%) patients, respectively and 26 (11.3%) patients met the criteria for HPD. Median overall survival in poor response groups (HPD and non-HPD PD) was extremely shorter than disease-controlled group (SD and PR/CR) (5.5 and 6.1 months vs. 16.2 and 18.3 months, respectively, P = 0.000). In multivariate analysis, HPD were significantly associated with heavy smoker (p = 0.0072), PD-L1 expression ≤1% (p = 0.0355), and number of metastatic site ≥3 (p = 0.0297). Among the serologic indexes including NLR, PLR, CAR, and LDH, only CAR had constantly significant correlations with HPD at the beginning of prior treatment and immunotherapy, and at the 1st tumor assessment. The number of CD4+ effector T cells and CD8+ cytotoxic T cells, and CD8+/PD-1+ tumor-infiltrating lymphocytes (TIL) tended to be smaller, especially in stromata of HPD group. More M2-type macrophages expressing CD14, CD68 and CD163 in the stromal area and markedly fewer CD56+ NK cells in the intratumoral area were observed in HPD group. Conclusions Our study suggests that not only clinical factors including heavy smoker, very low PD-L1 expression, multiple metastasis, and CAR index, but also fewer CD8+/PD-1+ TIL and more M2 macrophages in the tumor microenvironment are significantly associated with the occurrence of HPD in the patients with advanced/metastatic NSCLC receiving immunotherapy.
IntroductionTo compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping.Materials and MethodsThree groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements.ResultsDiagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters.ConclusionsCompared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of leptomeningeal metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.