Pigs have been one of the most important sources of meat for humans, and their productivity has been substantially improved by recent strong selection. Here, we present whole-genome resequencing analyses of 55 pigs of five breeds representing Korean native pigs, wild boar and three European origin breeds. 1,673.1 Gb of sequence reads were mapped to the Swine reference assembly, covering ∼99.2% of the reference genome, at an average of ∼11.7-fold coverage. We detected 20,123,573 single-nucleotide polymorphisms (SNPs), of which 25.5% were novel. We extracted 35,458 of non-synonymous SNPs in 9,904 genes, which may contribute to traits of interest. The whole SNP sets were further used to access the population structures of the breeds, using multiple methodologies, including phylogenetic, similarity matrix, and population structure analysis. They showed clear population clusters with respect to each breed. Furthermore, we scanned the whole genomes to identify signatures of selection throughout the genome. The result revealed several promising loci that might underlie economically important traits in pigs, such as the CLDN1 and TWIST1 genes. These discoveries provide useful genomic information for further study of the discrete genetic mechanisms associated with economically important traits in pigs.
Female fertility is a highly regulated process involving the synchronized activities of multiple tissues. The underlying genomic regulation of the tissue synchronization is poorly understood. To understand this better we investigated the transcriptomes of the porcine ovary, endometrium, and oviduct at days 0, 3, 6, 9, 12, 15, or 18 of the oestrous cycle. We analysed the transcriptome profiles of the individual tissues and focus on the bridging genes shared by two or more tissues. The three tissue-networks were connected forming a triangular shape. We identified 65 bridging genes with a high level of connectivity to all other genes in the network. The expression levels showed negative correlations between the ovary and the other two tissues, and low correlations between endometrium and oviduct. The main functional annotations involved biosynthesis of steroid hormones, cell-to-cell adhesion, and cell apoptosis, suggesting that regulation of steroid hormone synthesis and tissue viability are major regulatory mechanisms.
Over the last 30 years, Hanwoo has been selectively bred to improve economically important traits. Hanwoo is currently the representative Korean native beef cattle breed, and it is believed that it shared an ancestor with a Chinese breed, Yanbian cattle, until the last century. However, these two breeds have experienced different selection pressures during recent decades. Here, we whole-genome sequenced 10 animals each of Hanwoo and Yanbian cattle (20 total) using the Illumina HiSeq 2000 sequencer. A total of approximately 3.12 and 3.07 billion sequence reads were mapped to the bovine reference sequence assembly (UMD 3.1) at an average of approximately 10.71- and 10.53-fold coverage for Hanwoo and Yanbian cattle, respectively. A total of 17,936,399 single nucleotide polymorphisms (SNPs) were yielded, of which 22.3% were found to be novel. By annotating the SNPs, we further retrieved numerous nonsynonymous SNPs that may be associated with traits of interest in cattle. Furthermore, we performed whole-genome screening to detect signatures of selection throughout the genome. We located several promising selective sweeps that are potentially responsible for economically important traits in cattle; the PPP1R12A gene is an example of a gene that potentially affects intramuscular fat content. These discoveries provide valuable genomic information regarding potential genomic markers that could predict traits of interest for breeding programs of these cattle breeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.