The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes.
Mitochondrial translocation of pro-apoptotic Bax prior to apoptosis is well established after treatment with many cell death stimulants or under apoptosis-inducing conditions. The mechanism of mitochondrial translocation of Bax is, however, still unknown. The aim of this work was to investigate the mechanism of Bax activation and mitochondrial translocation to initiate apoptosis of human hepatoma HepG2 and porcine kidney LLC-PK1 cells exposed to various cell death agonists. Phosphorylation of Bax by JNK and p38 kinase activated after treatment with staurosporine, H 2 O 2 , etoposide, and UV light was demonstrated by the shift in the pI value of Bax on two-dimensional gels and confirmed by metabolic labeling with inorganic [ 32 P]phosphate in HepG2 cells. Specific inhibitors of JNK and p38 kinase significantly inhibited Bax phosphorylation and mitochondrial translocation and apoptosis of HepG2 cells. A specific small interfering RNA to MAPKK4 (the upstream protein kinase of JNK and p38 kinase) markedly decreased the levels of MAPKK4 and MAPKK3/6, blocked the activation of JNK or p38 kinase, and inhibited Bax phosphorylation. However, the negative control small interfering RNA did not cause these changes. Confocal microscopy of various Bax mutants showed differential rates of mitochondrial translocation of Bax before and after staurosporine treatment. Among the Bax mutants, T167D did not translocate to mitochondria after staurosporine exposure, suggesting that Thr 167 is a potential phosphorylation site. In conclusion, our results demonstrate, for the first time, that Bax is phosphorylated by stress-activated JNK and/or p38 kinase and that phosphorylation of Bax leads to mitochondrial translocation prior to apoptosis.Programmed cell death or apoptosis is an important cellular process that eliminates unwanted cells during normal development or damaged cells after removal of trophic factors or exposure to toxic chemicals. Recent studies have demonstrated that a variety of apoptosis-stimulating agents cause translocation of pro-apoptotic Bax and BH3 (Bcl-2 homology 3)-only proteins such as Bim and truncated Bid to mitochondria from the cytoplasm to initiate mitochondrion-dependent apoptosis through changing mitochondrial permeability (1-3). Apoptosis is reported to be stimulated by staurosporine (STS) 2 (4 -6); irradiation (4); dexamethasone (4); removal of interleukin-3 (7), interleukin-7 (8), or nerve growth factor (9); vitamin E succinate (10); various chemotherapeutic agents such as etoposide (11) and camptothecin (12); ethanol combined with tumor necrosis factor (13); and others. In contrast, treatment with cell survival factors such as interleukin-7 (8), cAMP (9), and granulocyte/macrophage colony-stimulating factor (14) prevents Bax translocation to mitochondria and the subsequent apoptosis, possibly through activation of the phosphatidylinositol 3-kinase-and Akt/protein kinase B-related cell survival pathway (15). This pathway was recently shown to promote phosphorylation of Bax at Ser 184 , followed by its...
BackgroundGlycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.Methods & findingsUsing genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04–1.06, per HbA1c-raising allele, p = 3 × 10−29); whereas GS-E was not (OR = 1.00, 95% CI 0.99–1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66–0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38–0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI 0.55–0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.ConclusionsAs G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, ...
Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (p<2.2×10−7): of these, 16 map outside known risk loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent “false leads” with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets: however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.