Mitochondria are highly dynamic organelles that continuously change their shape. Their main function is adenosine triphosphate (ATP) production; however, they are additionally involved in a variety of cellular phenomena, such as apoptosis, cell cycle, proliferation, differentiation, reprogramming, and aging. The change in mitochondrial morphology is closely related to the functionality of mitochondria. Normal mitochondrial dynamics are critical for cellular function, embryonic development, and tissue formation. Thus, defects in proteins involved in mitochondrial dynamics that control mitochondrial fusion and fission can affect cellular differentiation, proliferation, cellular reprogramming, and aging. Here, we review the processes and proteins involved in mitochondrial dynamics and their various associated cellular phenomena.
Reprogramming is one of the most essential areas of research in stem cell biology. Despite this importance, the mechanism and correlates of reprogramming remain largely unknown. In this study, we investigated the cytoplasmic remodeling and changes in metabolism that occur during reprogramming and differentiation of pluripotent stem cells. Specifically, we examined the cellular organelles of three pluripotent stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and epiblast stem cells (EpiSCs), by electron microscopy. We found that the cellular organelles of primed pluripotent EpiSCs were more similar to those of naive pluripotent ESCs and iPSCs than somatic cells. EpiSCs, as well as ESCs and iPSCs, contain large nuclei, poorly developed endoplasmic reticula, and underdeveloped cristae; however, their mitochondria were still mature relative to the mitochondria of ESCs and iPSCs. Next, we differentiated these pluripotent stem cells into neural stem cells (NSCs) in vitro and compared the morphology of organelles. We found that the morphology of organelles of NSCs differentiated from ESCs, iPSCs, and EpiSCs was indistinguishable from brain-derived NSCs. Finally, we examined the changes in energy metabolism that accompanied mitochondrial remodeling during reprogramming and differentiation. We found that the glycolytic activity of ESCs and iPSCs was greater compared with EpiSCs, and that the glycolytic activity of EpiSCs was greater compared with NSCs differentiated from ESCs, iPSCs, and EpiSCs. These results suggest that a change in the cellular state is accompanied by dynamic changes in the morphology of cytoplasmic organelles and corresponding changes in energy metabolism.
Mitochondria are highly dynamic organelles that continuously change their shape. Their main function is ATP production; however, they are additionally involved in a variety of cellular phenomena, such as apoptosis, cell cycle, proliferation, differentiation, reprogramming, and aging. The change in mitochondrial morphology is closely related to the functionality of mitochondria. Normal mitochondrial dynamics are critical for cellular function, embryonic development, and tissue formation. Thus, defect in proteins involved in mitochondrial dynamics that control mitochondrial fusion and fission can affect cellular differentiation, proliferation, cellular reprogramming, and aging. Here we review the processes and proteins involved in mitochondrial dynamics and its various associated cellular phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.