Mitochondria are essential for proper neuronal morphogenesis and functions, as they are the major source of energy for neural development. The dynamic morphology of mitochondria determines the key functions of mitochondria. Several regulatory proteins such as dynamin-related protein 1 (Drp1) are required to maintain mitochondrial morphology via a balance between continuous fusion and fission. Activity of Drp1, a key regulator in mitochondrial fission, is modulated by multiple post-translation modifications and receptor interactions. In addition, numerous researches have revealed that the regulation of Drp1 activity and mitochondrial dynamics is closely associated with several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. In this article, we concisely review the recent findings about the biological importance of Drp1-mediated mitochondrial fission in neurons under physiological and pathological conditions.
Mitochondrial morphology is dynamically remodeled by fusion and fission in neurons, and this process is implicated in nervous system development and pathology. However, the mechanism by which mitochondrial dynamics influence neuronal development is less clear. In this study, we found that the length of mitochondria is progressively reduced during normal development of chick embryo motoneurons (MNs), a process partly controlled by a fission-promoting protein, dynamin-related protein 1 (Drp1). Suppression of Drp1 activity by gene electroporation of dominant-negative mutant Drp1 in a subset of developing MNs increased mitochondrial length in vivo, and a greater proportion of Drp1-suppressed MNs underwent programmed cell death (PCD). By contrast, the survival of nontransfected MNs in proximity to the transfected MNs was significantly increased, suggesting that the suppression of Drp1 confers disadvantage during the competition for limited survival signals. Because we also monitored perturbation of neurite outgrowth and mitochondrial membrane depolarization following Drp1 suppression, we suggest that impairments of ATP production and axonal growth may be downstream factors that influence the competition of MNs for survival. Collectively, these results indicate that mitochondrial dynamics are required for normal axonal development and competition-dependent MN PCD.
Epigenetic modification such as DNA methylation and histone acetylation plays essential roles in many aspects of cellular function and development of animals. There is an increasing amounts of evidence for dynamic changes in the histone acetylation of specific gene segments, but little attempt was made to examine global pattern changes in the histone acetylation in developing nervous system. In this study, we found that acetylated histone H3 and H4 immunoreactivities were relatively weak in neuroepithelial cells in the ventricular zone of developing rat cerebral cortex or chick spinal cord, compared to the immature young neurons in the cortical plate of a rat embryo or lateral motor column in chick spinal cord. On the other hand, adult neural stem cells in the dentate gyrus (DG) of rat hippocampal formation did not exhibit such diminished histone acetylation, compared to neuroblasts and mature DG neurons. These results suggest that the level of histone acetylation is highly dynamic and tightly linked to the neuronal types and the differentiation stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.