Seasonal influenza epidemics lead to 3–5 million severe infections and 290,000–650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies.
BackgroundMost adoptive cell therapies (ACTs) suffer from an inability to control the therapeutic cell’s behavior following its transplantation into a patient. Thus, efforts to inhibit, activate, differentiate or terminate an ACT after patient reinfusion can be futile, because the required drug adversely affects other cells in the patient.MethodsWe describe here a two domain fusion receptor composed of a ligand-binding domain linked to a recycling domain that allows constitutive internalization and trafficking of the fusion receptor back to the cell surface. Because the ligand-binding domain is designed to bind a ligand not normally present in humans, any drug conjugated to this ligand will bind and endocytose selectively into the ACT.ResultsIn two embodiments of our strategy, we fuse the chronically endocytosing domain of human folate receptor alpha to either a murine scFv that binds fluorescein or human FK506 binding protein that binds FK506, thereby creating a fusion receptor composed of largely human components. We then create the ligand-targeted drug by conjugating any desired drug to either fluorescein or FK506, thereby generating a ligand-drug conjugate with ~10-9 M affinity for its fusion receptor. Using these tools, we demonstrate that CAR T cell activities can be sensitively tuned down or turned off in vitro as well as tightly controlled following their reinfusion into tumor-bearing mice.ConclusionsWe suggest this ‘chimeric endocytosing receptor’ can be exploited to manipulate not only CAR T cells but other ACTs following their reinfusion into patients. With efforts to develop ACTs to treat diseases including diabetes, heart failure, osteoarthritis, cancer and sickle cell anemia accelerating, we argue an ability to manipulate ACT activities postinfusion will be important.
The last step in influenza virus replication involves the assembly of viral components on the infected cell’s plasma membrane followed by budding of intact virus from the host cell surface. Because viral neuraminidase and hemagglutinin are both inserted into the host cell’s membrane during this process, influenza virus-infected cells are distinguished from uninfected cells by the presence of viral neuraminidase and hemagglutinin on their cell surfaces. In an effort to exploit this difference in cell surface markers for development of diagnostic and therapeutic agents, we have modified an influenza neuraminidase inhibitor, zanamivir, for targeting of attached imaging and therapeutic agents selectively to influenza viruses and virus-infected cells. We have designed here a zanamivir-conjugated rhodamine dye that allows visual monitoring of binding, internalization, and intracellular trafficking of the fluorescence-labeled neuraminidase in virus-infected cells. We also synthesize a zanamivir-99mTc radioimaging conjugate that permits whole body imaging of the virus’s biodistribution and abundance in infected mice. Finally, we create both a zanamivir-targeted cytotoxic drug (i.e., zanamivir-tubulysin B) and a viral neuraminidase-targeted CAR T cell and demonstrate that they are both able to kill viral neuraminidase-expressing cells without damaging healthy cells. Taken together, these data suggest that the influenza virus neuraminidase inhibitor, zanamivir, can be exploited to improve the diagnosis, imaging, and treatment of influenza virus infections.
Chimeric antigen receptor (CAR) T-cell therapies have proven to be effective in treating hematologic malignancies but demonstrate only marginal efficacy in eradicating solid tumors. Although several mechanisms can account for these differences, a major cause is thought to derive from CAR T-cell exhaustion, where chronic exposure to tumor antigen can activate feedback pathways that suppress CAR T-cell cytotoxicity. We describe here a strategy to reverse this CAR T-cell exhaustion using a universal anti-fluorescein CAR that concurrently serves as (i) a cancer recognition receptor that enables engagement of multiple cancer cell clones upon addition of a cocktail of bispecific fluorescein-linked tumor-targeting ligands, and (ii) a drug-internalizing receptor that mediates uptake of a CAR T-cell activator comprised of fluorescein linked to an immune stimulant. By attaching a Toll-like receptor 7 agonist (TLR7–1A) to fluorescein, we enable the anti-fluorescein CAR to bind and internalize TLR7–1A, leading to both downregulation of exhaustion markers (i.e., PD-1, TIM3, LAG3) and reactivation of exhausted CAR-T cells without causing the toxicities commonly associated with systemic administration of TLR7 agonists. The resulting rejuvenated CAR-T cells are observed to regress otherwise refractory solid tumors. Moreover, because no other immune cells are altered by this treatment, the data demonstrate that the exhaustion state of the CAR-T cells constitutes a major property that determines the efficacies of CAR T-cell therapies in solid tumors. Implications: A novel strategy for rejuvenating exhausted CAR-T cells is described previously that promotes downregulation of exhaustion markers and renewed eradication of cancer cells in a tumor mass.
Although chimeric antigen receptor (CAR) T cells have demonstrated significant promise in suppressing hematopoietic cancers, their applications in treating solid tumors have been limited by onset of CAR T cell exhaustion that accompanies continuous CAR T cell exposure to tumor antigen. To address this limitation, we have exploited the abilities of recently designed universal CARs to bind fluorescein and internalize a fluorescein‐TLR7 agonist conjugate by CAR‐mediated endocytosis. We demonstrate here that anti‐fluorescein CAR‐mediated uptake of a fluorescein‐TLR7‐3 conjugate can reactivate exhausted CAR T cells, leading to dramatic reduction in T cell exhaustion markers (PD‐1+Tim‐3+) and shrinkage of otherwise resistant tumors without inducing systemic activation of the immune system. We conclude that CAR T cell exhaustion can be reversed by administration of a CAR‐targeted TLR7 agonist, thereby enabling the CAR T cells to successfully treat solid tumors without incurring the systemic toxicity that commonly accompanies administration of nontargeted TLR7 agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.