Although CAR T cell therapies have proven to be effective in treating hematopoietic cancers, their abilities to regress solid tumors have been less encouraging. Mechanisms to explain these disparities have focused primarily on differences in cancer cell heterogeneity, barriers to CAR T cell penetration of solid tumors, and immunosuppressive microenvironments. To evaluate the contributions of immunosuppressive tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) on CAR T cell efficacies, we have exploited the ability of a folate-targeted Toll-like receptor 7 agonist (FA-TLR7-1A) to specifically reactivate TAMs and MDSCs from an immunosuppressive to pro-inflammatory phenotype without altering the properties of other immune cells. We report here that FA-TLR7-1A significantly augments standard CAR T cell therapies of 4T1 solid tumors in immune competent mice. We further show that co-administration of the FA-TLR7-1A with the CAR T cell therapy not only repolarizes TAMs and MDSCs from an M2-like anti-inflammatory to M1-like pro-inflammatory phenotype, but also enhances both CAR T cell and endogenous T cell accumulation in solid tumors while concurrently increasing their states of activation. Because analogous myeloid cells in healthy tissues ar not altered by administration of FA-TLR7-1A, no systemic activation of the immune system nor accompanying weight loss is observed. These data argue that immunosuppressive myeloid cells contribute prominently to the failure of CAR T cells to eradicate solid tumors and suggest that methods to reprogram tumor associated myeloid cells to a more inflammatory phenotype could significantly augment the potencies of CAR T cell therapies.
The last step in influenza virus replication involves the assembly of viral components on the infected cell’s plasma membrane followed by budding of intact virus from the host cell surface. Because viral neuraminidase and hemagglutinin are both inserted into the host cell’s membrane during this process, influenza virus-infected cells are distinguished from uninfected cells by the presence of viral neuraminidase and hemagglutinin on their cell surfaces. In an effort to exploit this difference in cell surface markers for development of diagnostic and therapeutic agents, we have modified an influenza neuraminidase inhibitor, zanamivir, for targeting of attached imaging and therapeutic agents selectively to influenza viruses and virus-infected cells. We have designed here a zanamivir-conjugated rhodamine dye that allows visual monitoring of binding, internalization, and intracellular trafficking of the fluorescence-labeled neuraminidase in virus-infected cells. We also synthesize a zanamivir-99mTc radioimaging conjugate that permits whole body imaging of the virus’s biodistribution and abundance in infected mice. Finally, we create both a zanamivir-targeted cytotoxic drug (i.e., zanamivir-tubulysin B) and a viral neuraminidase-targeted CAR T cell and demonstrate that they are both able to kill viral neuraminidase-expressing cells without damaging healthy cells. Taken together, these data suggest that the influenza virus neuraminidase inhibitor, zanamivir, can be exploited to improve the diagnosis, imaging, and treatment of influenza virus infections.
Chimeric antigen receptors (CARs) recently gained momentum in cancer treatment due to their ability to promote T-cell mediated responses to a specific tumor-associated antigen. CARs are part of the adoptive cell transfer (ACT) strategies that utilize patients' T lymphocytes, genetically engineered to kill cancer cells. However, despite the therapy's success against blood-related malignancies, treating solid tumors has not reached its fullest potential yet. The reasons include the complex suppressive tumor microenvironment, mutations on cancer cells' target receptors, lethal side-effects, restricted trafficking into the tumor, suboptimal persistence in vivo and the lack of animal models that faithfully resemble human tumor's immunological responses. Currently, rodent models are used to investigate the safety and efficacy of CAR therapies. However, these models are limited in representing the human disease faithfully, fail to predict the adverse treatment events and overestimate the efficacy of the therapy. On the other hand, spontaneously developed tumors in dogs are more suited in CAR research and their efficacy has been demonstrated in a number of diseases, including lymphoma, osteosarcoma and mammary tumors. The present review discusses the design and evolution of CARs, challenges of CAR in solid tumors, human and canine clinical trials and advantages of the canine model.
Prostate cancer is traditionally considered an immunologically “cold” tumor type rendering patients insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent anti tumor immune response to “heat up” the tumor microenvironment. However, many antigens expressed on prostate tumors are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a sub-optimal therapeutic index. Our target discovery and validation efforts identified STEAP2 as a superior prostate antigen for therapeutic targeting. Importantly, STEAP2 is a highly prevalent prostate cancer antigen displaying high, homogeneous cell surface expression across all stages of disease. A novel lead generation approach facilitated the development of a potent and specific armored STEAP2 CAR-T therapeutic candidate, AZD0754. This second generation CAR-T product is armored with a dominant-negative TGFβRII, thereby bolstering activity in the TGFβ-rich immunosuppressive environment of prostate cancer. Armored STEAP2 CAR-T cells demonstrate favorable in vitro properties, robust dose dependent in vivo efficacy in STEAP2 expressing cell line- and patient derived- mouse xenograft models and encouraging preclinical safety. Taken together, this data builds confidence in the specificity and potency of this potential first in class STEAP2 targeted CAR-T therapy and supports future clinical development. Citation Format: Dewald van Dyk, Peter Zanvit, Christine Fazenbaker, Kelly McGlinchey, Weichuan Luo, Jessica Pezold, John Meekin, Chien-ying Chang, Benjamin Clark, Philip L. Martin, Clare Hoover, Eric Tu, Ryan Gilbreth, Mark Cobbold, Gordon Moody, Emily E. Bosco. Antitumor activity of AZD0754, a dnTGFbRII armored STEAP2 targeted CAR-T therapy, in preclinical models of prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 2 (Clinical Trials and Late-Breaking Research); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(8_Suppl):Abstract nr LB085.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.