The use of albumin in the early resuscitation formula after major burn has been forbidden because of its damaging effect on the gut barrier function. We hypothesize that inhibition of the inducible isoform of nitric oxide synthase to stabilize endothelial permeability and to retain albumin in the vascular space will ameliorate the major trauma-induced gut barrier dysfunction. Design, Interventions, and Main Outcome Measures:In experiment 1, specific pathogen-free rats undergoing 35% total body surface area burn or sham burn were given equal volumes (7.5 mL/kg) of isotonic sodium chloride solution or albumin from femoral veins for fluid resuscitation at 0, 4, or 8 hours after burn. In experiment 2, intraperitoneal S-methylisothiourea sulfate (7.5 mg/kg) was given immediately after burn to rats from different groups, as in experiment 1 (SMT groups). At 24 hours after burn, the intestinal mucosa was assayed for myeloperoxidase activity as an index for neutrophil sequestration, the distribution of fluorescein isothiocyanate-dextran across the lumen of small intestine was determined to evaluate the intestinal permeability, and bacterial translocation (BT) to the mesenteric lymph nodes (MLNs) and histological findings in the ileum were also examined.Results: Compared with sham burn, burn induced significant increases in intestinal mucosa myeloperoxidase activity, intestinal permeability, BT to the MLNs, and villi sloughing in rats. Albumin administration at 0 or 4 hours after burn enhanced the increases in neutrophil sequestration, permeability, and villi sloughing compared with saline injection at the same times. In contrast, injection of albumin in the burn-SMT group did not aggravate these changes in intestinal myeloperoxidase activity, intestinal permeability, BT to the MLNs, and villi edema. Burn-SMT rats with albumin injections at 4 or 8 hours after burn showed significant 35% and 52% decreases, respectively, in intestinal permeability compared with burn-SMT-saline rats. Use of albumin at 8 hours after burn in combination with S-methylisothiourea significantly attenuated BT to the MLNs and reduced villi edema. Conclusions:Early albumin resuscitation aggravated the burn-induced gut damage. Albumin administration and inhibition of the inducible isoform of nitric oxide synthase in combination decreased burn-induced gut barrier dysfunction and reversed the damaging effect of albumin on gut barrier function and decreased BT.
The use of hypertonic saline (HTS) resuscitation in major trauma patients is still controversial. The objective of this study is to determine if inhibition of inducible nitric oxide synthase (iNOS) to stabilize the endothelial permeability and to retain HTS in the vascular space will reverse its exacerbating effect on burn-induced lung damage. In Experiment 1, specific pathogen-free (SPF) rats underwent 35% total body surface area (TBSA) burn and were resuscitated with 7.5 mL/kg HTS (7.5% NaCl), 7.5 mL/kg saline, or 50 mL/kg saline (nearly equal sodium load as HTS) via femoral veins for 15 min immediately after the burn. In Experiment 2, S-methylisothiourea (SMT) (7.5 mg/kg, i.p.) was given immediately after the burn to rats from the different groups of Experiment 1. At 8 h after the burn, the permeability and myeloperoxidase (MPO) activity of lung tissues were determined, and plasma samples were assayed for peroxynitrite levels. Burn significantly induced lung MPO activity, lung permeability, and blood dihydrorhodamine 123 (DHR 123) oxidation in rats. HTS administration after burn significantly increased the blood DHR 123 oxidation level, lung MPO activity, lung permeability, and inflammatory cell infiltration in comparison with those of burn plus 7.5 mg/kg saline and burn plus 50 mL/kg saline rats. In contrast, burn plus SMT rats with HTS injection showed significant 54%, 11%, and 35% decreases in blood DHR 123 oxidation level, lung MPO activity, and lung permeability, respectively, in comparison with burn plus SMT plus 7.5 mg/kg saline rats. In conclusion, restoration of extracellular fluid in early burn shock with HTS supplementation significantly exacerbates burn-induced lung neutrophil deposition, lung hyperpermeability, and blood peroxynitrite production. Inhibition of iNOS before HTS supplementation reverses the deteriorating effects of HTS on thermal injury-induced lung damage to beneficial ones. Using HTS in thermal injury resuscitation without the inhibition of iNOS is dangerous.
Using hypertonic saline as a resuscitation fluid in early burn shock markedly augmented the thermal injury-induced intestinal mucosa neutrophil deposition, lipid peroxidation, and intestinal hyperpermeability. Inhibition of inducible nitric oxide synthase not only significantly attenuated neutrophil deposition and mucosa lipid peroxidation but also reversed the deteriorating effects of hypertonic saline on thermal injury-induced gut barrier dysfunction and bacterial translocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.