Plant WRKY transcription factors were previously implicated in the alteration of gene expression in response to various pathogens. The WRKY proteins constitute a large family of plant transcription factors, whose precise functions have yet to be elucidated. Using a domain-specific differential display procedure, we isolated a WRKY gene, which is rapidly induced during an incompatible interaction between hot pepper and Tobacco mosaic virus (TMV) or Xanthomonas campestris pv . vesicatoria (Xcv). The full-length cDNA of CaWRKY-a (Capsicum annuum WRKY-a) encodes a putative polypeptide of 546 amino acids, containing two WRKY domains with a zinc finger motif. The expression of CaWRKY-a could be rapidly induced by not only chemical elicitor such as salicylic acid (SA) or ethephon but also wounding treatments. The nuclear localization of CaWRKY-a was determined in transient expression system using tobacco BY-2 cells by polyethylene glycol (PEG)-mediated transformation experiment. With oligonucleotide molecules containing the putative W-box sequences as a probe, we confirmed that CaWRKY-a protein had W-box-binding activity. These results suggest that CaWRKY-a might be involved as a transcription factor in plant defense-related signal transduction pathways.
To understand the molecular defense mechanism controlling the hypersensitive response (HR) better, we examined the hot pepper plant (Capsicum annuum L. cv. Bugang), which exhibits an HR in response to infection by Tobacco mosaic virus pathotype P0 (TMV-P0). A full-length cDNA clone was isolated by differential screening of a cDNA library that was constructed with mRNA extracted from hot pepper leaves during the resistance response to TMV-P0. The predicted amino acid sequence of the cDNA clone exhibited a high sequence similarity to germin-like protein (GLP). The CaGLP1 (Capsicum annuum GLP1) cDNA contains a single open reading frame of 660 bp encoding 220 amino acid residues. Upon inoculation with TMV or Xanthomonas, CaGLP1 transcripts were specifically accumulated in the incompatible interaction but not in the compatible interaction. In plants treated with salicylic acid (SA) or ethephon, which are signal molecules in the defense-related signal transduction pathway, CaGLP1 transcripts were accumulated rapidly. As far as we know, this is the first report that plant GLPs can be specifically induced during a defense response against viral infection. These data suggest that in the hot pepper plant CaGLP1 may be involved in the defense response to viral pathogens, and thus be classified as a new family of PR proteins, 'PR-16'.
Hot pepper (Capsicum annuum L. cv. Bugang) plants exhibit a hypersensitive response (HR) upon infection by Tobacco mosaic virus (TMV) pathotype P0. To elucidate molecular mechanism that underlies this resistance, hot pepper cv. Bugang leaves were inoculated with TMV-P0 and genes specifically up-regulated during the HR were isolated by differential screening. One of the clones, CaAlaAT1 encoding a putative alanine aminotransferase (EC 2.6.1.2) exhibited organ-specific expression pattern and the transcript accumulated abundantly in red (ripe) fruit tissues. CaAlaAT1 transcript was also induced in older leaves during senescence. The expression of CaAlaAT1 gene was increased in the incompatible interaction with TMV-P0 but was not in the compatible interaction with TMV-P1.2. When a strain of Xanthomonas campestris pv. vesicatoria (Xcv) carrying an AvrBs2 gene was infiltrated into the leaves of a pepper cv. ECW 20R carrying Bs2 resistance gene, a marked induction and maintenance of CaAlaAT1 gene expression was observed. The expression of CaAlaAT1 gene was triggered by salicylic acid (SA) and ethylene but not by methyl jasmonate (MeJA). CaAlaAT1 seemed to be localized mostly at the cytosol from the polyethylene glycol (PEG)-mediated transformation experiment. CaAlaAT1 seemed to catalyze alanine: 2-oxoglutarate aminotransferase (AKT) reaction, which was a main activity among the four activities in vitro, during the resistance response against TMV in hot pepper. These results suggest that CaAlaAT1, a protein known to be involved in metabolic reactions, might be one of the components in the plant's defense signal pathway against pathogens.
Hot pepper (Capsicum annuum L. cv. Bugang) plants exhibit a hypersensitive response (HR) upon infection by Tobacco mosaic virus (TMV) pathotype P(0). Previously, to elucidate molecular mechanism that underlies this resistance, hot pepper cv. Bugang leaves were inoculated with TMV-P(0) and genes specifically up-regulated during the HR were isolated by microarray analysis. One of the clones, Capsicum annuum cytosolic pyruvate kinase 1 (CaPK(c)1) gene was increased specifically in the incompatible interaction with TMV-P(0). The expression of CaPK(c)1 gene was also triggered not only by various hormones such as salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), but also NaCl and wounding. These results suggest that CaPK(c)1 responds to several defense-related abiotic stresses in addition to TMV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.