The interface of hybrid carbon/E-glass fibres composite is interlayered with Xantu.layr® polyamide 6,6 nanofibre veil to localise cracking to promote a gradual failure. The pseudo-ductile response of these novel stacking sequences examined under quasi-static three-point bending show a change to the failure mechanism. The change in failure mechanism due to the interfacial toughening is examined via SEM micrographs. The incorporation of veil toughening led to a change in the dominant failure mechanism, resulting in fibre yielding by localised kinking and reduced instances of buckling failure. In alternated carbon and glass fibre samples with glass fibre undertaking compression, a pseudo-ductile response with veil interlayering was observed. The localisation of the fibre failure, due to the inclusion of the veil, resulted in kink band formations which were found to be predictable in previous micro buckling models. The localisation of failure by the veil interlayer resulted in a pseudo-ductile response increasing the strain before failure by 24% compared with control samples.
The stiffness degradation of hybrid carbon/glass fibre composites are investigated under cyclic loading in three-point bending. The composites are compared to toughened composites interlayered with PA 6,6 nanofibre (veil) and a matrix toughened with 5% rubber particulate. With the incorporation of veil into the hybridised composite, the hybrid interface experienced extensive localised delamination, due to crack deflection, causing longitudinal cracking between the fibre and veil interface. It is observed that delamination was redirected and reduced by veil interlayering, due to crack bridging as the cracks propagated. The carbon fibre composites toughened by rubber particulate showed similar stiffness retention to carbon fibre after 1,000,000 cycles. The veil interlayering within carbon fibre improved the stiffness retention by 66.87% for the flexural modulus, compared to carbon fibre and rubber toughened carbon fibre laminates. In both glass and carbon fibre samples, the stiffness retention with veil showed a 10-fold increase in fatigue life, compared with untoughened controls. It is observed from the failure mechanics that veil acted as a randomly orientated fibre layer, rather than a matrix toughener.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.