Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year. Neither a vaccine nor an antiviral therapy is currently available for prevention and treatment of DENV infection. Here, we report a previously undescribed adenosine analog, NITD008, that potently inhibits DENV both in vitro and in vivo. In addition to the 4 serotypes of DENV, NITD008 inhibits other flaviviruses, including West Nile virus, yellow fever virus, and Powassan virus. The compound also suppresses hepatitis C virus, but it does not inhibit nonflaviviruses, such as Western equine encephalitis virus and vesicular stomatitis virus. A triphosphate form of NITD008 directly inhibits the RNA-dependent RNA polymerase activity of DENV, indicating that the compound functions as a chain terminator during viral RNA synthesis. NITD008 has good in vivo pharmacokinetic properties and is biologically available through oral administration. Treatment of DENV-infected mice with NITD008 suppressed peak viremia, reduced cytokine elevation, and completely prevented the infected mice from death. No observed adverse effect level (NOAEL) was achieved when rats were orally dosed with NITD008 at 50 mg/kg daily for 1 week. However, NOAEL could not be accomplished when rats and dogs were dosed daily for 2 weeks. Nevertheless, our results have proved the concept that a nucleoside inhibitor could be developed for potential treatment of flavivirus infections.
Deregulation of the cell cycle is a common strategy employed by many DNA and RNA viruses to trap and exploit the host cell machinery toward their own benefit. In many coronaviruses, the nucleocapsid protein (N protein) has been shown to inhibit cell cycle progression although the mechanism behind this is poorly
Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome.Methyltransferases (MTases) 3 play key roles in normal physiology and human diseases through methylating DNA, RNA, and proteins. Almost all MTases use S-adenosyl-L-methionine (SAM) as a methyl donor and generate S-adenosyl-Lhomocysteine (SAH) as a by-product. Pharmacological modulation of MTases by small molecules represents a novel approach to therapeutic intervention in cancer and other diseases (1). However, because the core domains of various MTases are conserved, designing inhibitors that specifically block the disease-related MTase without affecting other MTases, has been challenging. The ability to rationally design and generate selective inhibitors would have profound implications for development of new medicines for many methyltransferase-mediated diseases.Dengue virus (DENV), from genus Flavivirus in the family Flaviviridae, is the most prevalent mosquito-borne viral pathogen that infects humans. The four serotypes of DENV (DENV-1 to -4) pose a public health threat to 2.5 billion people worldwide, and cause 50 -100 million human infections each year. Neither vaccine nor antiviral therapy is currently available for DENV. The flavivirus MTase methylates the guanine N7 and ribose 2Ј-O positions of the viral RNA cap in a sequential manner (i.e. GpppA-RNA 3 m7GpppA-RNA 3 m7GpppAm-RNA) (2, 3). Recent studies have shown that flavivirus MTase is critical for viral replication and, therefore, represents a valid target for antiviral therapeutics (4 -6). We therefore examined the feasibility to design inhibitors that specifically modulate flavivirus MTase. EXPERIMENTAL PROCEDURESPreparation of DENV-3 MTases-The DNA fragment representing the MTase domain of DENV-3 was cloned into expression vector pGEX4T1 (Amersham Biosciences). Ala-substitution mutant MTases were prepared using a standard overlapping PCR procedure. Recombinant MTases, containing an N-terminal GST, were expressed in Escherichia coli. BL21 cells and purified through a GSTPrep TM FF 16/10 column (GE Healthcare). The GST tag was then cleaved by thrombin and removed from the MTases using the GST column. The MTases were further purified through gel filtration to ensure protein purity was Ͼ95%. The p...
In March 2003, a novel coronavirus was isolated from patients exhibiting atypical pneumonia, and was subsequently proven to be the causative agent of the disease now referred to as SARS (severe acute respiratory syndrome). The complete genome of the SARS-CoV (SARS coronavirus) has since been sequenced. The SARS-CoV nucleocapsid (SARS-CoV N) protein shares little homology with other members of the coronavirus family. In the present paper, we show that SARS-CoV N is capable of inducing apoptosis of COS-1 monkey kidney cells in the absence of growth factors by down-regulating ERK (extracellular-signal-regulated kinase), up-regulating JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase) pathways, and affecting their downstream effectors. SARS-CoV N expression also down-regulated phospho-Akt and Bcl-2 levels, and activated caspases 3 and 7. However, apoptosis was independent of the p53 and Fas signalling pathways. Furthermore, activation of the p38 MAPK pathway was found to induce actin reorganization in cells devoid of growth factors. At the cytoskeletal level, SARS-CoV N down-regulated FAK (focal adhesion kinase) activity and also down-regulated fibronectin expression. This is the first report showing the ability of the N protein of SARS-CoV to induce apoptosis and actin reorganization in mammalian cells under stressed conditions.
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The virus is a novel coronavirus isolated from patients exhibiting atypical pneumonia and may have originated from wild animals such as civet cats in southern China. The genome of SARS-CoV is a positive-sense, single-stranded RNA whose sequence is distantly related to all known coronaviruses that infect humans and animals. Like other known coronaviruses, SARS-CoV is an enveloped virus containing three outer structural proteins, namely the membrane (M), envelope (E), and spike (S) proteins. The nucleocapsid (N) protein together with the viral RNA genome presumably form a helical core located within the viral envelope. The SARS-CoV nucleocapsid (N) protein is a 423 amino-acid, predicted phospho-protein of 46 kDa that shares little homology with other members of the coronavirus family. A short serine-rich stretch, and a putative bipartite nuclear localization signal are unique to it, thus suggesting its involvement in many important functions during the viral life cycle. In this report we have cloned the N gene of the SARS coronavirus, and studied its property of self-association to form dimers. We expressed the N protein as a fusion protein in the yeast two-hybrid system to demonstrate self-association and confirmed dimerization of the N protein from mammalian cell lysates by coimmunoprecipitation. Furthermore, via deletion analysis, we have shown that the C-terminal 209 amino-acid region constitutes the interaction domain responsible for self-association of the N protein to form dimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.