Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-Å resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.Flaviviridae are enveloped viruses with positive-strand RNA genomes that have been grouped into three genera, Hepacivirus, Pestivirus, and Flavivirus (11,59). Several members of the Flavivirus genus, e.g., dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus, and West Nile virus (WNV), are medically important arthropod-borne pathogens afflicting humans. DENV infects 50 to 100 million people each year, with ϳ500,000 patients developing the more severe disease dengue hemorrhagic fever, leading to hospitalizations and resulting in approximately 20,000 deaths, mainly in children (24,26,27,29). Based on serological studies, DENVs are further classified into four distinct serotypes, DENV 1 to 4, whose respective genomes share ϳ60% sequence identity, with ϳ90% sequence identity within a serotype (7, 26). The DENV RNA genome spans about 10.7 kb and contains a type I methyl guanosine cap structure at its 5Ј end but is devoid of a polyadenylate tail. The genomic RNA is translated into a single polyprotein (58), which is cleaved into three structural (C-prM-E) and seven nonstructural (NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5) proteins by both the viral and cellular proteases (28). The viral serine protease is within the N-terminal region of NS3, and recent structural studies show that part of its catalytic site is formed by the viral cofactor NS2B upon substrate binding (18). The C-terminal region of NS3 forms the RNA helicase domain, which is thought to either separate a double-stranded RNA template into individual strands or disrupt secon...
Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year. Neither a vaccine nor an antiviral therapy is currently available for prevention and treatment of DENV infection. Here, we report a previously undescribed adenosine analog, NITD008, that potently inhibits DENV both in vitro and in vivo. In addition to the 4 serotypes of DENV, NITD008 inhibits other flaviviruses, including West Nile virus, yellow fever virus, and Powassan virus. The compound also suppresses hepatitis C virus, but it does not inhibit nonflaviviruses, such as Western equine encephalitis virus and vesicular stomatitis virus. A triphosphate form of NITD008 directly inhibits the RNA-dependent RNA polymerase activity of DENV, indicating that the compound functions as a chain terminator during viral RNA synthesis. NITD008 has good in vivo pharmacokinetic properties and is biologically available through oral administration. Treatment of DENV-infected mice with NITD008 suppressed peak viremia, reduced cytokine elevation, and completely prevented the infected mice from death. No observed adverse effect level (NOAEL) was achieved when rats were orally dosed with NITD008 at 50 mg/kg daily for 1 week. However, NOAEL could not be accomplished when rats and dogs were dosed daily for 2 weeks. Nevertheless, our results have proved the concept that a nucleoside inhibitor could be developed for potential treatment of flavivirus infections.
A delicate balance of signals regulates cell survival. One set of these signals is derived from integrin-mediated cell adhesion to the extracellular matrix (ECM). Loss of cell attachment to the ECM causes apoptosis, a process known as anoikis. In searching for proteins involved in cell adhesion-dependent regulation of anoikis, we identified Bit1, a mitochondrial protein that is released into the cytoplasm during apoptosis. Cytoplasmic Bit1 forms a complex with AES, a small Groucho/transducin-like enhancer of split (TLE) protein, and induces cell death with characteristics of caspase-independent apoptosis. Cell attachment to fibronectin counteracts the apoptotic effect of Bit1 and AES. Increasing Bit1 expression enhances anoikis, while suppressing the expression reduces it. Thus, we have elucidated an integrin-controlled pathway that is, at least in part, responsible for the cell survival effects of cell-ECM interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.