Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-Å resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.Flaviviridae are enveloped viruses with positive-strand RNA genomes that have been grouped into three genera, Hepacivirus, Pestivirus, and Flavivirus (11,59). Several members of the Flavivirus genus, e.g., dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus, and West Nile virus (WNV), are medically important arthropod-borne pathogens afflicting humans. DENV infects 50 to 100 million people each year, with ϳ500,000 patients developing the more severe disease dengue hemorrhagic fever, leading to hospitalizations and resulting in approximately 20,000 deaths, mainly in children (24,26,27,29). Based on serological studies, DENVs are further classified into four distinct serotypes, DENV 1 to 4, whose respective genomes share ϳ60% sequence identity, with ϳ90% sequence identity within a serotype (7, 26). The DENV RNA genome spans about 10.7 kb and contains a type I methyl guanosine cap structure at its 5Ј end but is devoid of a polyadenylate tail. The genomic RNA is translated into a single polyprotein (58), which is cleaved into three structural (C-prM-E) and seven nonstructural (NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5) proteins by both the viral and cellular proteases (28). The viral serine protease is within the N-terminal region of NS3, and recent structural studies show that part of its catalytic site is formed by the viral cofactor NS2B upon substrate binding (18). The C-terminal region of NS3 forms the RNA helicase domain, which is thought to either separate a double-stranded RNA template into individual strands or disrupt secon...
Together with the NS5 polymerase, the NS3 helicase has a pivotal function in flavivirus RNA replication and constitutes an important drug target. We captured the dengue virus NS3 helicase at several stages along the catalytic pathway including bound to single-stranded (ss) RNA, to an ATP analogue, to a transition-state analogue and to ATP hydrolysis products. RNA recognition appears largely sequence independent in a way remarkably similar to eukaryotic DEAD box proteins Vasa and eIF4AIII. On ssRNA binding, the NS3 enzyme switches to a catalyticcompetent state imparted by an inward movement of the P-loop, interdomain closure and a change in the divalent metal coordination shell, providing a structural basis for RNA-stimulated ATP hydrolysis. These structures demonstrate for the first time large quaternary changes in the flaviviridae helicase, identify the catalytic water molecule and point to a b-hairpin that protrudes from subdomain 2, as a critical element for dsRNA unwinding. They also suggest how NS3 could exert an effect as an RNA-anchoring device and thus participate both in flavivirus RNA replication and assembly.
Dengue fever is an important emerging public health concern, with several million viral infections occurring annually, for which no effective therapy currently exists. The NS3 protein from Dengue virus is a multifunctional protein of 69 kDa, endowed with protease, helicase, and nucleoside 5-triphosphatase (NTPase) activities. Thus, NS3 plays an important role in viral replication and represents a very interesting target for the development of specific antiviral inhibitors. We present the structure of an enzymatically active fragment of the Dengue virus NTPase/helicase catalytic domain to 2.4 Å resolution. The structure is composed of three domains, displays an asymmetric distribution of charges on its surface, and contains a tunnel large enough to accommodate single-stranded RNA. Its C-terminal domain adopts a new fold compared to the NS3 helicase of hepatitis C virus, which has interesting implications for the evolution of the Flaviviridae replication complex. A bound sulfate ion reveals residues involved in the metal-dependent NTPase catalytic mechanism. Comparison with the NS3 hepatitis C virus helicase complexed to single-stranded DNA would place the 3 singlestranded tail of a nucleic acid duplex in the tunnel that runs across the basic face of the protein. A possible model for the unwinding mechanism is proposed.
Several flaviviruses are important human pathogens, including dengue virus, a disease against which neither a vaccine nor specific antiviral therapies currently exist. During infection, the flavivirus RNA genome is translated into a polyprotein, which is cleaved into several components. Nonstructural protein 3 (NS3) carries out enzymatic reactions essential for viral replication, including proteolysis of the polyprotein through its serine protease N-terminal domain, with a segment of 40 residues from the NS2B protein acting as a cofactor. The ATPase/helicase domain is located at the C terminus of NS3. Atomic structures are available for these domains separately, but a molecular view of the full-length flavivirus NS3 polypeptide is still lacking. We report a crystallographic structure of a complete NS3 molecule fused to 18 residues of the NS2B cofactor at a resolution of 3.15 Å. The relative orientation between the protease and helicase domains is drastically different than the single-chain NS3-NS4A molecule from hepatitis C virus, which was caught in the act of cis cleavage at the NS3-NS4A junction. Here, the protease domain sits beneath the ATP binding site, giving the molecule an elongated shape. The domain arrangement found in the crystal structure fits nicely into an envelope determined ab initio using small-angle X-ray scattering experiments in solution, suggesting a stable molecular conformation. We propose that a basic patch located at the surface of the protease domain increases the affinity for nucleotides and could also participate in RNA binding, explaining the higher unwinding activity of the full-length enzyme compared to that of the isolated helicase domain.Several members of the flaviviruses are important human pathogens, including yellow fever virus (YFV), Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus (WNV), and dengue virus (25). For the latter virus, neither a specific therapy nor a vaccine exists, and treatment is currently limited to the use of analgesics and fluid replacement. Since dengue virus is endemic in most tropical and subtropical areas, causing several hundreds of thousands of severe cases (dengue shock syndrome or dengue hemorrhagic fever), with approximately 30,000 deaths per year, compounds with antiviral activity are actively sought (21, 46). The positive-sense flavivirus RNA genome of 11 kb forms a single open reading frame that is translated into a polyprotein precursor of ca. 370 kDa consisting of the structural proteins C, prM, and E and seven nonstructural proteins, nonstructural protein 1 (NS1), NS2A, NS2B, NS3, NS4A, NS4B, and NS5. During viral maturation, this polyprotein is cleaved by host cell proteases in the endoplasmic reticulum and by the NS3 protein in the cytoplasm (Fig. 1A) (25). Cleavage of the polyprotein is mediated by the serine protease N-terminal domain of NS3, with a hydrophilic segment of 40 residues from the transmembrane NS2B protein acting as a cofactor necessary for this activity. The domain required for ATPase/helicase ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.