Developing uncooled photodetectors at mid-wavelength infrared (MWIR) is critical for various applications including remote sensing, heat seeking, spectroscopy, and more. In this study, we demonstrate room-temperature operation of nanowire-based photodetectors at MWIR composed of vertical selectivearea InAsSb nanowire photoabsorber arrays on large bandgap InP substrate with nanoscale plasmonic gratings. We accomplish this by significantly suppressing the nonradiative recombination at the InAsSb nanowire surfaces by introducing ex-situ conformal Al2O3 passivation shells. Transient simulations estimate an extremely low surface recombination velocity on the order of 10 3 cm/s. We further achieve room-temperature photoluminescence emission from InAsSb nanowires, spanning the entire MWIR regime from 3 µm to 5 µm. A dry-etching process is developed to expose only the top nanowire facets for metal contacts, with the sidewalls conformally covered by Al2O3 shells, allowing for a higher internal quantum efficiency. Based on these techniques, we fabricate nanowire photodetectors with an optimized pitch and diameter and demonstrate room-temperature spectral response with MWIR detection signatures up to 3.4 µm. The results of this work indicate that uncooled focal plane arrays at MWIR on low-cost InP substrates can be designed with nanostructured absorbers for highly compact and fully integrated detection platforms.
There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm2. In addition, the cells on GaAs substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.
The optical properties of InGaAs/GaAs surface quantum dots (SQDs) and buried QDs (BQDs) are investigated by photoluminescence (PL) measurements. The integrated PL intensity, linewidth, and lifetime of SQDs are significantly different from the BQDs both at room temperature and at low temperature. The differences in PL response, measured at both steady state and in transient, are attributed to carrier transfer between the surface states and the SQDs.
Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multijunction solar cell with access to a wide range of well-developed direct bandgap materials. Multijunction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.
Exploring the potentiality of enhancing the performance of avalanche photo diodes (APDs) using novel nanoscale structures is highly attractive for overcoming the bottleneck of avalanche probability. This work demonstrates, for the first time, multiplication enhancement of electroninitiated photocur rent due to impact ionization in InAs quantum dots (QDs) within a GaAs APD structure. A fivelayer stacked 2.25 MLs InAs QD/50 nm GaAs spacer multiplication structure integrated into a separated absorption, charge, and multiplication GaAs homo APD results in up to six times higher multiplica tion factors in comparison to a reference device without QD over a tempera ture range of 77-300 K. In addition, extremely low excess noise factor in close proximity to that of silicon is also observed with an effective k eff factor below 0.1. This demonstration is of fundamental interest and relevant for future ultra efficient avalanche detector applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.