Recently, such membranes with selective wettability (i.e., hydrophilic and in air or underwater oleophobic) have been incorporated with a photocatalytic semiconductor (e.g., TiO 2 , [26] α-Fe 2 O 3 , [27] WO 3 , [28] BiVO 4 , [29] β-FeOOH, [30] g-C 3 N 4 , [31] and Membrane-based technologies are attractive for remediating oily wastewater because they are relatively energy-efficient and are applicable to a wide range of industrial effluents. For complete treatment of oily wastewater, removing dissolved contaminants from the water phase is typically followed by adsorption onto an adsorbent, which complicates the process. Here, an in-air superhydrophilic and underwater superoleophobic membrane-based continuous separation of surfactant-stabilized oil-in-water emulsions and in situ decontamination of water by visible-light-driven photocatalytic degradation of dissolved organic contaminants is reported. The membrane is fabricated by utilizing a thermally sensitized stainless steel mesh coated with visible light absorbing iron-doped titania nanoparticles. Post annealing of the membrane can enhance the adhesion of nanoparticles to the membrane surface by formation of a bridge between them. An apparatus that enables continuous separation of surfactant-stabilized oil-in-water emulsion and in situ photocatalytic degradation of dissolved organic matter in the water-rich permeate upon irradiation of visible light on the membrane surface with greater than 99% photocatalytic degradation is developed. The membrane demonstrates the recovery of its intrinsic water-rich permeate flux upon continuous irradiation of light after being contaminated with oil. Finally, continuous oil−water separation and in situ water decontamination is demonstrated by photocatalytically degrading model toxins in water-rich permeate.
Liquid electrolytes currently used in lithium-ion batteries have critical drawbacks such as high flammability, high reactivity toward electrode materials, and solvent leakage. To overcome these issues, most recent research has focused on synthesis and characterization of highly conductive gel-type polymer electrolytes containing large numbers of organic solvents in the polymer matrix. There are still many hurdles to overcome, however, before they can be applied to commercial-level lithium-ion batteries. Since a large amount of organic solvent is required to achieve high ionic conductivity, battery safety is not significantly enhanced. In our study, we synthesized highly conductive quasi-solid-state electrolytes (QSEs) containing an ionically conductive oligomer (polycaprolactone triacrylate) and a small amount of organic solvent by employing click chemistry. In the QSE, polycaprolactone participates in dissociation of lithium salt and migration of lithium ions, resulting in high ionic conductivity. The Li/ LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell that used this QSE exhibited good cycling performance and enhanced thermal stability, and durability; no organic solvent leakage was observed even under high pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.