With a limited effective voxel rate, to date, each laser-scanning mesoscopic multiphoton microscope (MPM), despite securing an ultra-large field of view (FOV) and an ultra-high optical resolution simultaneously, experiences a fundamental issue with digitization; i.e., inability to satisfy the Nyquist-Shannon sampling criterion to resolve the optics-limited sub-micron resolution over the whole FOV. Such a system either neglects the criterion degrading the digital resolution to twice the pixel size, or significantly reduces the imaging area and/or the imaging speed to respect the digitization. Here we introduce a Nyquist figure of merit parameter to assess this issue, further to comprehend a maximum aliasing-free FOV and a cross-over excitation wavelength for a laser scanning MPM system. Based on our findings we demonstrate an ultra-high voxel rate acquisition in a custom-built mesoscopic MPM system to exceed the Nyquist-rate for a >3800 FOV-resolution ratio while not compromising the imaging speed as well as the photon-budget.
With a limited dynamic range of an imaging system, there are always regions with signal intensities comparable to the noise level, if the signal intensity distribution is close to or even wider than the available dynamic range. Optical brain/neuronal imaging is such a case where weak-intensity ultrafine structures, such as, nerve fibers, dendrites and dendritic spines, often coexist with ultrabright structures, such as, somas. A high fluorescence-protein concentration makes the soma order-of-magnitude brighter than the adjacent ultrafine structures resulting in an ultra-wide dynamic range. A straightforward enhancement of the weak-intensity structures often leads to saturation of the brighter ones, and might further result in amplification of high-frequency background noises. An adaptive illumination strategy to real-time-compress the dynamic range demands a dedicated hardware to operate and owing to electronic limitations, might encounter a poor effective bandwidth especially when each digitized pixel is required to be illumination optimized. Furthermore, such a method is often not immune to noise-amplification while locally enhancing a weak-intensity structure. We report a dedicated-hardware-free method for rapid noise-suppressed wide-dynamic-range compression so as to enhance visibility of such weak-intensity structures in terms of both contrast-ratio and signal-to-noise ratio while minimizing saturation of the brightest ones. With large-FOV aliasing-free two-photon fluorescence neuronal imaging, we validate its effectiveness by retrieving weak-intensity ultrafine structures amidst a strong noisy background. With compute-unified-device-architecture (CUDA)-acceleration, a time-complexity of <3 ms for a 1000x1000-sized 16-bit data-set is secured, enabling a real-time applicability of the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.