With a limited effective voxel rate, to date, each laser-scanning mesoscopic multiphoton microscope (MPM), despite securing an ultra-large field of view (FOV) and an ultra-high optical resolution simultaneously, experiences a fundamental issue with digitization; i.e., inability to satisfy the Nyquist-Shannon sampling criterion to resolve the optics-limited sub-micron resolution over the whole FOV. Such a system either neglects the criterion degrading the digital resolution to twice the pixel size, or significantly reduces the imaging area and/or the imaging speed to respect the digitization. Here we introduce a Nyquist figure of merit parameter to assess this issue, further to comprehend a maximum aliasing-free FOV and a cross-over excitation wavelength for a laser scanning MPM system. Based on our findings we demonstrate an ultra-high voxel rate acquisition in a custom-built mesoscopic MPM system to exceed the Nyquist-rate for a >3800 FOV-resolution ratio while not compromising the imaging speed as well as the photon-budget.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.