The air-sensitive nature of white phosphorus underlies its destructive effect as a munition: Tetrahedral P4 molecules readily react with atmospheric dioxygen, leading this form of the element to spontaneously combust upon exposure to air. Here, we show that hydrophobic P4 molecules are rendered air-stable and water-soluble within the hydrophobic hollows of self-assembled tetrahedral container molecules, which form in water from simple organic subcomponents and iron(II) ions. This stabilization is not achieved through hermetic exclusion of O2 but rather by constriction of individual P4 molecules; the addition of oxygen atoms to P4 would result in the formation of oxidized species too large for their containers. The phosphorus can be released in controlled fashion without disrupting the cage by adding the competing guest benzene.
Biological encapsulants such as ferritin, [1] lumazine synthase, [2] and viral capsids [3] achieve their selective separation and sequestration of substrates by providing: 1) a guest microenvironment isolated from the surroundings, 2) favorable interactions complementing a size and shape match with the encapsulated guests, and 3) sufficient flexibility to allow guests to be incorporated and released.[4] These biological hosts self-assemble from multiple copies of identical protein subunits, the symmetries and connection properties [5] of which dictate the hollow polyhedral structures of the encapsulant. In order to create abiological molecular systems that are capable of expressing functions of similar complexity to biological systems and to explore new applications of synthetic hosts, [6] there is a need to create synthetic capsules capable of tightly and selectively binding large substrates.Taking inspiration from natural systems [1][2][3] and from other previously reported metal-organic capsules, [7] we report the design and synthesis of a series of metallo-supramolecular cage molecules capable of selectively encapsulating large aromatic guests. The necessary features to achieve this function are: 1) small pore sizes to isolate guests from the environment, [8] 2) large cavity sizes to ensure sufficient volume for the guests of interest, 3) enough flexibility and lability to allow guests to enter and exit the host, and 4) regions of the cage walls rich in p-electron density to provide favorable interactions with targeted guests.[9] The selective encapsulation of large aromatic molecules is an attractive goal since their physicochemical properties are similar, which can render their separation difficult. The higher fullerenes represent particularly attractive targets because their potential applications [10] remain difficult to explore because of the challenges associated with their separation, despite recent advances. [11] Employing principles of geometric analysis, [5] we determined that combination of the C 4 -symmetric tetrakis-bidentate ligand shown in Figure 1 with the C 3 -symmetric iron(II) tris(pyridylimine) center would result in the formation of an O-symmetric cubic structure of general formula M 8 L 6 , in which the corners of the cube are defined by the metal centers and the faces by the ligands (Figure 1). This cage represents the first example of a new class of closed-face metallosupramolecular cubic hosts to be synthesized. In order to provide favorable binding sites for our target guests we incorporated porphyrin moieties, which have previously been demonstrated to interact with large aromatic molecules, [11a-c, 12] into our design. This design also provides for small pore sizes and the potential to create new chemical functionality through the introduction of different metal ions into the centers of the N 4 macrocycle and by substituting these metals axial ligands. We chose to employ labile iron(II) centers with pyridylimine ligands as chelating agents to allow for the formation of the liga...
Biochemical systems are adaptable, capable of reconstitution at all levels to achieve the functions associated with life. Synthetic chemical systems are more limited in their ability to reorganize to achieve new functions; they can reconfigure to bind an added substrate (template effect) or one binding event may modulate a receptor's affinity for a second substrate (allosteric effect). Here we describe a synthetic chemical system that is capable of structural reconstitution on receipt of one anionic signal (perchlorate) to create a tight binding pocket for another anion (chloride). The complex, barrel-like structure of the chloride receptor is templated by five perchlorate anions. This second-order templation phenomenon allows chemical networks to be envisaged that express more complex responses to chemical signals than is currently feasible.
The effects of aromatic stabilization on the rates of [1,5]-hydrogen shifts in a series of carbo- and heterocyclic dihydroaromatic compounds were estimated by B3LYP/6-31G computations. The aromatic stabilization energy of the product is directly translated into increased exothermicity of these reactions. Relative trends for a significant range of endothermic and exothermic [1,5]-shifts with different intrinsic activation energies are reliably described by Marcus theory. The effects of aromaticity or antiaromaticity are very large and can lead to dramatic acceleration or deceleration of [1,5]-hydrogen shifts and even to complete disappearance of the reaction barrier. Not only the activation energy but the shape and position of the reaction barrier can be efficiently controlled by changes in the aromaticity of the products, making these systems interesting models for studying hydrogen tunneling. Marcus theory can also be applied successfully to other pericyclic shifts such as [1,5]-shifts which involve chlorine and methyl transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.