Functional imaging methods monitor neural activity by measuring hemodynamic signals. These are more closely related to local field potentials (LFPs) than to action potentials. We simultaneously recorded electrical and hemodynamic responses in the cat visual cortex. Increasing stimulus strength enhanced spiking activity, high-frequency LFP oscillations, and hemodynamic responses. With constant stimulus intensity, the hemodynamic response fluctuated; these fluctuations were only loosely related to action potential frequency but tightly correlated to the power of LFP oscillations in the gamma range. These oscillations increase with the synchrony of synaptic events, which suggests a close correlation between hemodynamic responses and neuronal synchronization.
The identification of important features in multi-electrode recordings requires the decomposition of data in order to disclose relevant features and to offer a clear graphical representation. This can be a demanding task. Parallel Factor Analysis (PARAFAC; Hitchcock, 1927; Carrol and Chang, 1970; Harshman, 1970) is a method to decompose multi-dimensional arrays in order to focus on the features of interest, and provides a distinct illustration of the results. We applied PARAFAC to analyse spatio-temporal patterns in the functional connectivity between neurons, as revealed in their spike trains recorded in cat primary visual cortex (area 18). During these recordings we reversibly deactivated feedback connections from higher visual areas in the pMS (posterior middle suprasylvian) cortex in order to study the impact of these top-down signals. Cross correlation was computed for every possible pair of the 16 electrodes in the electrode array. PARAFAC was then used to reveal the effects of time, stimulus, and deactivation condition on the correlation patterns. Our results show that PARAFAC is able to reliably extract changes in correlation strength for different experimental conditions and display the relevant features. Thus, PARAFAC proves to be well-suited for the use in the context of electrophysiological (action potential) recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.