Geodesic flows of Riemannian or Finsler manifolds have been the only known contact Anosov flows. We show that even in dimension 3 the world of contact Anosov flows is vastly larger via a surgery construction near an E-transverse Legendrian link that encompasses both the Handel-Thurston and Goodman surgeries and that produces flows not topologically orbit equivalent to any algebraic flow. This includes examples on many hyperbolic 3-manifolds, any of which have remarkable dynamical and geometric properties. To the latter end we include a proof of a folklore theorem from 3-manifold topology: In the unit tangent bundle of a hyperbolic surface, the complement of a knot that projects to a filling geodesic is a hyperbolic 3-manifold.
Abstract‘Bunching’ conditions on an Anosov system guarantee the regularity of the Anosov splitting up toC2−ε. Open dense sets of symplectic Anosov systems and geodesic flows do not have Anosov splitting exceeding the asserted regularity. This is the first local construction of low-regularity examples.
ABSTRACT. For projectivizations of rational maps Bellon and Viallet defined the notion of algebraic entropy using the exponential growth rate of the degrees of iterates. We want to call this notion to the attention of dynamicists by computing algebraic entropy for certain rational maps of projective spaces (Theorem 6.2) and comparing it with topological entropy (Theorem 5.1). The particular rational maps we study are monomial maps (Definition 1.2), which are closely related to toral endomorphisms. Theorems 5.1 and 6.2 imply that the algebraic entropy of a monomial map is always bounded above by its topological entropy, and that the inequality is strict if the defining matrix has more than one eigenvalue outside the unit circle. Also, Bellon and Viallet conjectured that the algebraic entropy of every rational map is the logarithm of an algebraic integer, and Theorem 6.2 establishes this for monomial maps. However, a simple example (the monomial map of Example 7.2) shows that a stronger conjecture of Bellon and Viallet is incorrect, in that the sequence of algebraic degrees of the iterates of a rational map of projective space need not satisfy a linear recurrence relation with constant coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.