A reliable assessment of the thermal environment should take into account the whole of the six parameters affecting the thermal sensation (air temperature, air velocity, humidity, mean radiant temperature, metabolic rate and thermo-physical properties of clothing). Anyway, the need of a quick evaluation based on few measurements and calculations has leaded to like best temperature-humidity indices instead of rational methods based on the heat balance on the human body. Among these, Canadian Humidex, preliminarily used only for weather forecasts, is becoming more and more widespread for a generalized assessment of both outdoor and indoor thermal environments. This custom arouses great controversies since using an index validated in outdoor conditions does not assure its indoor reliability. Moreover is it really possible to carry out the thermal environment assessment ignoring some of variables involved in the physiological response of the human body? Aiming to give a clear answer to these questions, this paper deals with a comparison between the assessment carried out according to the rational methods suggested by International Standards in force and the Humidex index. This combined analysis under hot stress situations (indoor and outdoor) has been preliminarily carried out; in a second phase the study deals with the indoor comfort prediction. Obtained results show that Humidex index very often leads to the underestimation of the workplace dangerousness and a poor reliability of comfort prediction when it is used in indoor situations.
The assessment of harsh working conditions requires a correct evaluation of the metabolic rate. This paper revises the basis described in the ISO 8996 standard for the evaluation of the metabolic rate at a work station from the recording of the heart rate of a worker during a representative period of time. From a review of the literature, formulas different from those given in the standard are proposed to estimate the maximum working capacity, the maximum heart rate, the heart rate and the metabolic rate at rest and the relation (HR vs. M) at the basis of the estimation of the equivalent metabolic rate, as a function of the age, height and weight of the person. A Monte Carlo simulation is used to determine, from the approximations of these parameters and formulas, the imprecision of the estimated equivalent metabolic rate. The results show that the standard deviation of this estimate varies from 10 to 15%.
This paper pays tribute to Povl Ole Fanger, the late professor at the Technical University of Denmark. His scientific studies, focused on the main parameters affecting indoor environmental quality, have inspired (and still inspire) professional design engineers and academic researchers on human thermal comfort and indoor air quality over the last five decades. In addition, he strongly contributed to the creation of a “European School” that addressed engineering issues and was well integrated with the American School, which was characterised (at that time) by a physiological approach. Ten years after his death, this paper is a memorial of his research in the field of thermal comfort and some aspects of indoor air quality. Only the original papers of this Danish scientist will be discussed. The analysis of each single topic of his research and of its impact on past and present research would require more space than would be available in a review article. The authors are confident that the research described in this paper will serve as a beacon for researchers working on thermal comfort now and in the future
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.